Suppr超能文献

聊天机器人是可靠的文本注释工具吗?有时候是。

Are chatbots reliable text annotators? Sometimes.

作者信息

Kristensen-McLachlan Ross Deans, Canavan Miceal, Kárdos Marton, Jacobsen Mia, Aarøe Lene

机构信息

Department of Linguistics, Cognitive Science, and Semiotics, Aarhus University, Aarhus 8000, Denmark.

Center for Humanities Computing, Aarhus University, Aarhus 8000, Denmark.

出版信息

PNAS Nexus. 2025 Apr 1;4(4):pgaf069. doi: 10.1093/pnasnexus/pgaf069. eCollection 2025 Apr.

Abstract

Recent research highlights the significant potential of ChatGPT for text annotation in social science research. However, ChatGPT is a closed-source product, which has major drawbacks with regards to transparency, reproducibility, cost, and data protection. Recent advances in open-source (OS) large language models (LLMs) offer an alternative without these drawbacks. Thus, it is important to evaluate the performance of OS LLMs relative to ChatGPT and standard approaches to supervised machine learning classification. We conduct a systematic comparative evaluation of the performance of a range of OS LLMs alongside ChatGPT, using both zero- and few-shot learning as well as generic and custom prompts, with results compared with supervised classification models. Using a new dataset of tweets from US news media and focusing on simple binary text annotation tasks, we find significant variation in the performance of ChatGPT and OS models across the tasks and that the supervised classifier using DistilBERT generally outperforms both. Given the unreliable performance of ChatGPT and the significant challenges it poses to Open Science, we advise caution when using ChatGPT for substantive text annotation tasks.

摘要

近期研究凸显了ChatGPT在社会科学研究文本标注方面的巨大潜力。然而,ChatGPT是一个闭源产品,在透明度、可重复性、成本和数据保护方面存在重大缺陷。开源(OS)大语言模型(LLMs)的最新进展提供了一种没有这些缺陷的替代方案。因此,评估开源大语言模型相对于ChatGPT以及监督式机器学习分类标准方法的性能非常重要。我们对一系列开源大语言模型与ChatGPT的性能进行了系统的比较评估,使用了零样本和少样本学习以及通用和自定义提示,并将结果与监督分类模型进行比较。通过使用一个来自美国新闻媒体推文的新数据集,并专注于简单的二元文本标注任务,我们发现在各项任务中ChatGPT和开源模型的性能存在显著差异,并且使用DistilBERT的监督分类器通常表现优于两者。鉴于ChatGPT性能不可靠以及它给开放科学带来的重大挑战,我们建议在将ChatGPT用于实质性文本标注任务时要谨慎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebc1/11954583/454e72755802/pgaf069f1.jpg

相似文献

1
Are chatbots reliable text annotators? Sometimes.聊天机器人是可靠的文本注释工具吗?有时候是。
PNAS Nexus. 2025 Apr 1;4(4):pgaf069. doi: 10.1093/pnasnexus/pgaf069. eCollection 2025 Apr.
4
ChatGPT outperforms crowd workers for text-annotation tasks.在文本注释任务中,ChatGPT的表现优于众包工作者。
Proc Natl Acad Sci U S A. 2023 Jul 25;120(30):e2305016120. doi: 10.1073/pnas.2305016120. Epub 2023 Jul 18.
10
Identifying and Extracting Rare Diseases and Their Phenotypes with Large Language Models.使用大语言模型识别和提取罕见疾病及其表型
J Healthc Inform Res. 2024 Jan 5;8(2):438-461. doi: 10.1007/s41666-023-00155-0. eCollection 2024 Jun.

本文引用的文献

1
GPT is an effective tool for multilingual psychological text analysis.GPT 是一种用于多语言心理文本分析的有效工具。
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2308950121. doi: 10.1073/pnas.2308950121. Epub 2024 Aug 12.
2
ChatGPT outperforms crowd workers for text-annotation tasks.在文本注释任务中,ChatGPT的表现优于众包工作者。
Proc Natl Acad Sci U S A. 2023 Jul 25;120(30):e2305016120. doi: 10.1073/pnas.2305016120. Epub 2023 Jul 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验