Liu Jiarui, Wang Xinhai, Gao Tinghong, Yang Wensheng, Jian Qinyan, Li Bingxian, He Lishan, Ruan Yunjun
Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University Guiyang 550025 China
RSC Adv. 2025 Apr 1;15(13):9875-9883. doi: 10.1039/d5ra00172b. eCollection 2025 Mar 28.
Lithium-sulfur batteries (LSBs) are highly anticipated due to their remarkable theoretical specific energy and energy density. Nevertheless, the polysulfide shuttle effect severely curtails their cycle life, posing a significant obstacle to commercialization. Herein, we introduce nickel-cobalt oxide/nickel-cobalt sulfate hollow nanowires (NCO/NCSO-HNWs) as a separator modification material. The ingeniously designed hollow nanostructure of NCO/NCSO-HNWs endows it with a profusion of adsorption and catalytic active sites. This unique feature enables it to not only physically adsorb lithium polysulfides (LiPSs) but also catalytically convert them, thereby remarkably enhancing the anchoring and conversion efficiency of LiPSs. The LSBs equipped with NCO/NCSO-HNWs-modified separators exhibit an outstanding initial capacity of 1260 mA h g at 0.2C. Even after 100 cycles, a high capacity of 956 mA h g is retained, corresponding to an impressive retention rate of 75.9%. Notably, at 1C, after enduring 500 cycles, the discharge capacity still stabilizes at 695 mA h g. The utilization of such hollow nanowire-based separator modification materials represents a novel and effective strategy for elevating the performance of LSBs, holding substantial promise for surmounting the challenges associated with the shuttle effect and expediting the commercialization journey of LSBs.
锂硫电池(LSBs)因其卓越的理论比能量和能量密度而备受期待。然而,多硫化物穿梭效应严重缩短了它们的循环寿命,给商业化带来了重大障碍。在此,我们引入氧化镍钴/硫酸镍钴中空纳米线(NCO/NCSO-HNWs)作为隔膜改性材料。NCO/NCSO-HNWs巧妙设计的中空纳米结构赋予其大量的吸附和催化活性位点。这一独特特性使其不仅能物理吸附多硫化锂(LiPSs),还能催化转化它们,从而显著提高LiPSs的锚定和转化效率。配备NCO/NCSO-HNWs改性隔膜的LSBs在0.2C时表现出1260 mA h g的出色初始容量。即使在100次循环后,仍保留956 mA h g的高容量,对应着75.9%的可观保留率。值得注意的是,在1C下,经过500次循环后,放电容量仍稳定在695 mA h g。利用这种基于中空纳米线的隔膜改性材料是提高LSBs性能的一种新颖且有效的策略,对于克服与穿梭效应相关的挑战以及加快LSBs的商业化进程具有重大前景。