Oviedo Byron Jiménez, Arroyo-Hernandez Jorge, Gutiérrez-Bolaños María José, Alvarado-Pérez Hazel, Mora-Monestel Esteban, Rojas-Alvarado Alexander, Álvarez-Valverde Victor, Jiménez-Bonilla Pablo
School of Mathematics, Universidad Nacional, Heredia, Costa Rica.
School of Chemistry, Universidad Nacional, Heredia, Costa Rica.
BioInspired Process BIP IEEE Int Conf. 2024 Dec;2024. doi: 10.1109/bip63158.2024.10885392.
This study focuses on refining Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) for chromatographic profiling to analyze chemical changes in extracts from the Costa Rican rainforest. High-Performance Liquid Chromatography (HPLC) with a diode array detector (DAD) and Mass Detector were employed, where traditional analyses often discard valuable spectral data beyond the maximum absorption wavelength. To optimize the analysis, Principal Component Analysis (PCA) were used to select the optimal number of components for MCR-ALS. Fern extracts, stored under varying conditions -refrigeration, warm temperatures, and UV light exposure- are analyzed over time to study their chemical stability. The decomposition identifies key chemical constituents, revealing that warmer conditions and UV exposure accelerate degradation, with significant shifts in chemical composition observed over time. MCR-ALS analysis allows detailed tracking of chemical changes, showing emerging peaks and shifts in concentration, particularly in the more reactive compounds, enhancing resolution and overcoming challenges such as peak interference and co-elution. The study highlights the differences between UV-absorption data and mass spectrometry, where mass spectrometry offers more detailed resolution but requiring greater computational resources. The use of both methods provides a comprehensive understanding of the chemical dynamics of the extracts. This research demonstrates the potential of MCR-ALS, combined with advanced statistical tools, for improving chromatographic analysis and contributing to botanical and natural product research.
本研究聚焦于改进用于色谱分析的多元曲线分辨交替最小二乘法(MCR-ALS),以分析来自哥斯达黎加雨林提取物中的化学变化。采用了配备二极管阵列检测器(DAD)和质谱检测器的高效液相色谱(HPLC),传统分析通常会丢弃最大吸收波长以外的宝贵光谱数据。为了优化分析,使用主成分分析(PCA)来选择MCR-ALS的最佳成分数量。对在不同条件下储存的蕨类植物提取物——冷藏、温暖温度和紫外线照射——随时间进行分析,以研究其化学稳定性。分解过程确定了关键化学成分,表明温暖的条件和紫外线照射会加速降解,随着时间的推移观察到化学成分有显著变化。MCR-ALS分析能够详细追踪化学变化,显示出出现的峰和浓度变化,特别是在反应性更强的化合物中,提高了分辨率并克服了诸如峰干扰和共洗脱等挑战。该研究突出了紫外线吸收数据和质谱之间的差异,其中质谱提供了更详细的分辨率,但需要更多的计算资源。两种方法的结合使用能够全面了解提取物的化学动态。这项研究证明了MCR-ALS与先进统计工具相结合在改进色谱分析以及对植物学和天然产物研究做出贡献方面的潜力。