Richard Eva, Marchuk Hannah, Álvarez Mar, He Wentao, Chen Xiaoxin, Desviat Lourdes R, Zhang Guo-Fang
Centro de Biología Molecular Severo Ochoa UAM-CSIC, CIBERER, IdiPaz, IUBM, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain.
Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Carmichael Building 48-203, 300 North Duke Street, Durham, NC, 27701, USA.
Cell Mol Life Sci. 2025 Apr 2;82(1):137. doi: 10.1007/s00018-025-05661-5.
Propionic acidemia is an inborn error of metabolism caused by mutations in either the PCCA or PCCB genes. Patients with propionic acidemia experience a range of complications, including life-threatening cardiac dysfunctions. However, the pathological mechanisms underlying propionic acidemia-associated cardiac diseases remain largely unknown. To gain insights into the metabolic alterations in propionic acidemia, we studied human induced pluripotent stem cell-derived cardiomyocytes generated from a patient with propionic acidemia with two pathogenic PCCA mutations (p.Cys616_Val633del and p.Gly477Glufs9*) and from a healthy individual. Using stable isotope-based metabolic flux analysis, we confirmed that the PCCA mutations lead to impaired propionyl-CoA carboxylase activity in human induced pluripotent stem cell-derived cardiomyocytes. In addition to being converted to propionylcarnitine, the accumulated propionyl-CoA can also be hydrolyzed to propionate and exported out of the cell, serving as a secondary "pressure valve" to regulate cellular propionyl-CoA levels. Interestingly, the deficiency of propionyl-CoA carboxylase was found to shift fuel metabolism from fatty acid oxidation to increased glucose metabolism human in induced pluripotent stem cell-derived cardiomyocytes from patients with propionic acidemia. This metabolic switch is less energy-efficient and may contribute to the development of chronic cardiac dysfunction in patients with propionic acidemia.
丙酸血症是一种由PCCA或PCCB基因突变引起的先天性代谢缺陷。丙酸血症患者会出现一系列并发症,包括危及生命的心脏功能障碍。然而,丙酸血症相关心脏疾病的病理机制在很大程度上仍不清楚。为了深入了解丙酸血症中的代谢改变,我们研究了由一名患有两种致病性PCCA突变(p.Cys616_Val633del和p.Gly477Glufs9*)的丙酸血症患者以及一名健康个体产生的人诱导多能干细胞衍生的心肌细胞。使用基于稳定同位素的代谢通量分析,我们证实PCCA突变导致人诱导多能干细胞衍生的心肌细胞中丙酰辅酶A羧化酶活性受损。除了转化为丙酰肉碱外,积累的丙酰辅酶A还可以水解为丙酸盐并排出细胞,作为调节细胞内丙酰辅酶A水平的二级“压力阀”。有趣的是,在丙酸血症患者的人诱导多能干细胞衍生的心肌细胞中,发现丙酰辅酶A羧化酶缺乏会使燃料代谢从脂肪酸氧化转变为葡萄糖代谢增加。这种代谢转换的能量效率较低,可能导致丙酸血症患者慢性心脏功能障碍的发展。