Suppr超能文献

利用深度学习预测大西洋和本格拉厄尔尼诺事件。

Predicting Atlantic and Benguela Niño events with deep learning.

作者信息

Bachèlery Marie-Lou, Brajard Julien, Patacchiola Massimiliano, Illig Serena, Keenlyside Noel

机构信息

Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway.

CMCC Foundation, Euro-Mediterranean Center on Climate Change, Italy.

出版信息

Sci Adv. 2025 Apr 4;11(14):eads5185. doi: 10.1126/sciadv.ads5185. Epub 2025 Apr 2.

Abstract

Atlantic and Benguela Niño events substantially affect the tropical Atlantic region, with far-reaching consequences on local marine ecosystems, African climates, and El Niño Southern Oscillation. While accurate forecasts of these events are invaluable, state-of-the-art dynamic forecasting systems have shown limited predictive capabilities. Thus, the extent to which the tropical Atlantic variability is predictable remains an open question. This study explores the potential of deep learning in this context. Using a simple convolutional neural network architecture, we show that Atlantic/Benguela Niños can be predicted up to 3 to 4 months ahead. Our model excels in forecasting peak-season events with remarkable accuracy extending lead time to 5 months. Detailed analysis reveals our model's ability to exploit known physical precursors, such as long-wave ocean dynamics, for accurate predictions of these events. This study challenges the perception that the tropical Atlantic is unpredictable and highlights deep learning's potential to advance our understanding and forecasting of critical climate events.

摘要

大西洋和本格拉尼诺事件对热带大西洋地区产生重大影响,对当地海洋生态系统、非洲气候以及厄尔尼诺-南方涛动有着深远后果。虽然对这些事件的准确预测非常宝贵,但最先进的动态预测系统显示出有限的预测能力。因此,热带大西洋变化的可预测程度仍是一个悬而未决的问题。本研究探讨了深度学习在这种情况下的潜力。使用简单的卷积神经网络架构,我们表明大西洋/本格拉尼诺尼诺事件可以提前3到4个月进行预测。我们的模型在预测旺季事件方面表现出色,具有显著的准确性,提前期可延长至5个月。详细分析揭示了我们的模型利用已知物理前兆(如长波海洋动力学)对这些事件进行准确预测的能力。这项研究挑战了热带大西洋不可预测的观念,并突出了深度学习在推进我们对关键气候事件的理解和预测方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验