Suppr超能文献

一种用于云豹物种快速准确颅骨测量区分的基于网络的工具。

A web-based tool for rapid and accurate craniometric differentiation of clouded leopard species.

作者信息

Gomez Chrishen R, Kitchener Andrew C, Hearn Andrew J, Maryanto Ibnu, Johnson Paul J, Macdonald David W, Yamaguchi Nobuyuki

机构信息

Wildlife Conservation Research Unit, Department of Biology, The Racanati-Kaplan Centre, University of Oxford, Oxford, UK.

Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh, EH1 1JF, UK.

出版信息

Sci Rep. 2025 Apr 2;15(1):11240. doi: 10.1038/s41598-025-96080-w.

Abstract

The illegal wildlife markets of Southeast Asia are bolstered by organised criminal networks and the region's rich density of charismatic wildlife. Forensic tools identifying species and their origins are vital to combat wildlife crime. However, many require expensive technology and skilled personnel, limiting their use in rural trade hotspots. This study introduces a replicable statistical framework, using skull morphometrics, to distinguish related species with simple measurements. We developed a web-based classifier trained on clouded leopard (Neofelis spp.) skulls from museum collections across Europe, Asia and the U.S.A., a genus often targeted in wildlife trade. Our categorical predictive model, based on two key metrics, the fronto-nasal "pit" and m1 talonid morphology achieved 97% accuracy (p < 0.005). A continuous predictor model, using postorbital width, achieved 80.6% accuracy for males and 85.6% for females (both p < 0.05). These models were encoded into a free, user-friendly web app, enabling practitioners in remote areas to distinguish these two species easily. This tool not only supports anti-trafficking efforts but also enables museum curators to correctly assign provenance to clouded leopard skulls with uncertain origins.

摘要

东南亚非法野生动物市场因有组织犯罪网络和该地区丰富的魅力型野生动物资源而愈发猖獗。识别物种及其来源的法医工具对于打击野生动物犯罪至关重要。然而,许多此类工具需要昂贵的技术和专业人员,限制了它们在农村贸易热点地区的使用。本研究引入了一个可复制的统计框架,利用头骨形态测量学,通过简单测量来区分相关物种。我们开发了一个基于网络的分类器,用来自欧洲、亚洲和美国博物馆收藏的云豹(豹属)头骨进行训练,该属动物常成为野生动物贸易的目标。我们基于额鼻“凹坑”和m1下跟座形态这两个关键指标建立的分类预测模型,准确率达到了97%(p < 0.005)。使用眶后宽度的连续预测模型,对雄性的准确率为80.6%,对雌性为85.6%(均p < 0.05)。这些模型被编码到一个免费、用户友好的网络应用程序中,使偏远地区的从业者能够轻松区分这两个物种。这个工具不仅支持反走私行动,还能让博物馆馆长正确地为来源不明的云豹头骨确定出处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da96/11965479/c2f89261fd26/41598_2025_96080_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验