Suppr超能文献

基于深度学习的磁共振引导下恶性肝肿瘤热消融的重建与超分辨率技术

Deep learning-based reconstruction and superresolution for MR-guided thermal ablation of malignant liver lesions.

作者信息

Winkelmann Moritz T, Kübler Jens, Gassenmaier Sebastian, Nickel Dominik M, Ashkar Antonia, Nikolaou Konstantin, Afat Saif, Hoffmann Rüdiger

机构信息

Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.

MR Application Predevelopment, Siemens Healthcare AG, Forchheim, Germany.

出版信息

Cancer Imaging. 2025 Apr 2;25(1):47. doi: 10.1186/s40644-025-00869-x.

Abstract

OBJECTIVE

This study evaluates the impact of deep learning-enhanced T1-weighted VIBE sequences (DL-VIBE) on image quality and procedural parameters during MR-guided thermoablation of liver malignancies, compared to standard VIBE (SD-VIBE).

METHODS

Between September 2021 and February 2023, 34 patients (mean age: 65.4 years; 13 women) underwent MR-guided microwave ablation on a 1.5 T scanner. Intraprocedural SD-VIBE sequences were retrospectively processed with a deep learning algorithm (DL-VIBE) to reduce noise and enhance sharpness. Two interventional radiologists independently assessed image quality, noise, artifacts, sharpness, diagnostic confidence, and procedural parameters using a 5-point Likert scale. Interrater agreement was analyzed, and noise maps were created to assess signal-to-noise ratio improvements.

RESULTS

DL-VIBE significantly improved image quality, reduced artifacts and noise, and enhanced sharpness of liver contours and portal vein branches compared to SD-VIBE (p < 0.01). Procedural metrics, including needle tip detectability, confidence in needle positioning, and ablation zone assessment, were significantly better with DL-VIBE (p < 0.01). Interrater agreement was high (Cohen κ = 0.86). Reconstruction times for DL-VIBE were 3 s for k-space reconstruction and 1 s for superresolution processing. Simulated acquisition modifications reduced breath-hold duration by approximately 2 s.

CONCLUSION

DL-VIBE enhances image quality during MR-guided thermal ablation while improving efficiency through reduced processing and acquisition times.

摘要

目的

本研究评估与标准容积内插法屏气检查(SD-VIBE)相比,深度学习增强的T1加权容积内插法屏气检查序列(DL-VIBE)对肝脏恶性肿瘤磁共振引导热消融术中图像质量和操作参数的影响。

方法

2021年9月至2023年2月期间,34例患者(平均年龄:65.4岁;13例女性)在1.5T扫描仪上接受磁共振引导下微波消融术。术中的SD-VIBE序列通过深度学习算法(DL-VIBE)进行回顾性处理,以减少噪声并提高清晰度。两名介入放射科医生使用5分李克特量表独立评估图像质量、噪声、伪影、清晰度、诊断信心和操作参数。分析了评分者间的一致性,并创建噪声图以评估信噪比的改善情况。

结果

与SD-VIBE相比,DL-VIBE显著提高了图像质量,减少了伪影和噪声,并增强了肝脏轮廓和门静脉分支的清晰度(p<0.01)。DL-VIBE在包括针尖可检测性、针定位信心和消融区评估在内的操作指标方面明显更好(p<0.01)。评分者间一致性较高(Cohen κ=0.86)。DL-VIBE的重建时间为k空间重建3秒,超分辨率处理1秒。模拟采集修改使屏气时间缩短了约2秒。

结论

DL-VIBE在磁共振引导热消融术中提高了图像质量,同时通过减少处理和采集时间提高了效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ea/11966842/d026c7836877/40644_2025_869_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验