Suppr超能文献

中医“多病同辨”人工智能方法与系统的研发及其对临床决策的可解释性

Developing the Artificial Intelligence Method and System for "Multiple Diseases Holistic Differentiation" in Traditional Chinese Medicine and Its Interpretability to Clinical Decision.

作者信息

Chen Zhe, Zhang Dong, Nie Pengfei, Fan Guanhao, He Zhiyuan, Wang Hui, Zhang Chenyue, Yang Fengwen, Liu Chunxiang, Zhang Junhua

机构信息

Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.

Haihe Laboratory of Modern Chinese Medicine, Tianjin, China.

出版信息

J Evid Based Med. 2025 Jun;18(2):e70016. doi: 10.1111/jebm.70016.

Abstract

AIM

The development of artificial intelligence (AI) for traditional Chinese medicine (TCM) has played an important role in clinical decision-making, mainly reflected in the intersectionality and variability of symptoms, syndromes, and patterns for TCM multiple diseases holistic differentiation (MDHD). This study aimed to develop a TCM AI method and system for clinical decisions more transparent with explainable structural framework.

METHODS

This study developed the TCM syndrome elements integration with priori rule and deep learning (TCM-SEI-RD) method and TCM-MDHD system by high-quality expert knowledge datasets, to predict various TCM syndromes and patterns in hierarchical modules. TCM-BERT-CNN model fused the BERT with CNN model capture feature-related sequence, as the benchmark model in the TCM-SEI-RD method, to improve the performance of predicting TCM syndrome elements. The framework of the TCM-MDHD system involved the TCM-SEI-RD method and TCM "diseases-syndromes-patterns" benchmark sequences, to provide distributed results with credibility.

RESULTS

For predicting results to the overall TCM syndrome elements, the TCM-SEI-RD achieves 95.4%, 94.43%, and 94.89% in precision, recall, and F1 score, respectively, and 3.33%, 2.28%, and 2.81% improvement over the benchmark model. TCM-MDHD system demonstrates credibility grading at each stage in various diseases and uses the practical example to illustrate the process of distributed decision-making results and transparency with credibility.

CONCLUSIONS

Our method and system, as the general AI technologies for TCM syndromes and patterns diagnosis in multiple diseases, can provide the clinical diagnostic basis with the best performance for the TCM preparations rational use, and distribute interpretability to the clinical decision-making process.

摘要

目的

人工智能(AI)在中医(TCM)领域的发展在临床决策中发挥了重要作用,主要体现在中医多种疾病整体辨证(MDHD)中症状、证候和证型的交叉性和变异性。本研究旨在开发一种具有可解释结构框架的、使临床决策更具透明度的中医AI方法和系统。

方法

本研究通过高质量专家知识数据集开发了中医证候要素与先验规则及深度学习相结合(TCM-SEI-RD)的方法和中医MDHD系统,以在分层模块中预测各种中医证候和证型。中医BERT-CNN模型将BERT与CNN模型融合以捕获特征相关序列,作为TCM-SEI-RD方法中的基准模型,以提高中医证候要素的预测性能。中医MDHD系统的框架涉及TCM-SEI-RD方法和中医“病-证-型”基准序列,以提供具有可信度的分布式结果。

结果

对于中医证候要素的整体预测结果,TCM-SEI-RD的精确率、召回率和F1分数分别达到95.4%、94.43%和94.89%,比基准模型分别提高了3.33%、2.28%和2.81%。中医MDHD系统在各种疾病的每个阶段都展示了可信度分级,并通过实例说明了分布式决策结果的过程及其可信度和透明度。

结论

我们的方法和系统作为用于多种疾病中医证候和证型诊断的通用AI技术,可为合理使用中药制剂提供最佳性能的临床诊断依据,并为临床决策过程赋予可解释性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验