Suppr超能文献

基于深度学习的中医整体辨证诊断预测模型

Traditional Chinese medicine diagnostic prediction model for holistic syndrome differentiation based on deep learning.

作者信息

Chen Zhe, Zhang Dong, Liu Chunxiang, Wang Hui, Jin Xinyao, Yang Fengwen, Zhang Junhua

机构信息

Evidence-based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.

Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.

出版信息

Integr Med Res. 2024 Mar;13(1):101019. doi: 10.1016/j.imr.2023.101019. Epub 2023 Dec 19.

Abstract

BACKGROUND

With the development of traditional Chinese medicine (TCM) syndrome knowledge accumulation and artificial intelligence (AI), this study proposes a holistic TCM syndrome differentiation model for the classification prediction of multiple TCM syndromes based on deep learning and accelerates the construction of modern foundational TCM equipment.

METHODS

We searched publicly available TCM guidelines and textbooks for expert knowledge and validated these sources using ten-fold cross-validation. Based on the BERT and CNN models, with the classification constraints from TCM holistic syndrome differentiation, the TCM-BERT-CNN model was constructed, which completes the end-to-end TCM holistic syndrome text classification task through symptom input and syndrome output. We assessed the performance of the model using precision, recall, and F1 scores as evaluation metrics.

RESULTS

The TCM-BERT-CNN model had a higher precision (0.926), recall (0.9238), and F1 score (0.9247) than the BERT, TextCNN, LSTM RNN, and LSTM ATTENTION models and achieved superior results in model performance and predictive classification of most TCM syndromes. Symptom feature visualization demonstrated that the TCM-BERT-CNN model can effectively identify the correlation and characteristics of symptoms in different syndromes with a strong correlation, which conforms to the diagnostic characteristics of TCM syndromes.

CONCLUSIONS

The TCM-BERT-CNN model proposed in this study is in accordance with the TCM diagnostic characteristics of holistic syndrome differentiation and can effectively complete diagnostic prediction tasks for various TCM syndromes. The results of this study provide new insights into the development of deep learning models for holistic syndrome differentiation in TCM.

摘要

背景

随着中医证候知识的积累和人工智能(AI)的发展,本研究基于深度学习提出了一种用于多种中医证候分类预测的整体中医辨证模型,并加速现代中医基础设备的建设。

方法

我们在公开可用的中医指南和教科书中搜索专家知识,并使用十折交叉验证对这些来源进行验证。基于BERT和CNN模型,结合中医整体辨证的分类约束,构建了中医BERT-CNN模型,该模型通过症状输入和证候输出完成端到端的中医整体证候文本分类任务。我们使用精确率、召回率和F1分数作为评估指标来评估模型的性能。

结果

中医BERT-CNN模型的精确率(0.926)、召回率(0.9238)和F1分数(0.9247)高于BERT、TextCNN、LSTM RNN和LSTM ATTENTION模型,并且在大多数中医证候的模型性能和预测分类方面取得了优异的结果。症状特征可视化表明,中医BERT-CNN模型能够有效地识别不同证候中具有强相关性的症状的相关性和特征,这符合中医证候的诊断特点。

结论

本研究提出的中医BERT-CNN模型符合中医整体辨证的诊断特点,能够有效地完成各种中医证候的诊断预测任务。本研究结果为中医整体辨证深度学习模型的发展提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8312/10826311/9c7257f11052/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验