Rafieerad Alireza, Khanahmadi Soofia, Rahman Akif, Shahali Hossein, Böhmer Maik, Amiri Ahmad
Institute for Molecular Biosciences, Johann Wolfgang Goethe Universität, 60438, Frankfurt am Main, Germany.
Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany.
Small. 2025 May;21(21):e2500654. doi: 10.1002/smll.202500654. Epub 2025 Apr 3.
This work presents two advancements in the engineering design and bio-applications of emerging MXene nanosheets and derived quantum dots. First, a facile, versatile, and universal strategy is showcased for inducing the right- or left-handed chirality into the surface of titanium carbide-based MXene (TiCT) to form stable mixed-low-dimensional chiral MXene biomaterials with enhanced aqueous colloidal dispersibility and debonding tolerance, mimicking the natural asymmetric bio-structure of most biomolecules and living organisms. In particular, TiCT MXene nanosheets are functionalized with carboxyl-based terminals and bound feasibly with the D/L-cysteine amino acid ligands. The physicochemical characterizations of these 2D-0D/1D chiral MXene heterostructures suggest the inclusion of TiCT nanosheets and different levels of self-derived MXene quantum dots and surface titanium-oxide nanoparticles, providing enhanced material stability and oxidative degradation resistance for tested months. Further, the interaction and molecular binding at cysteine-TiCT/Ti-oxide interfaces, associated ion transport and ionic conductivity analysis, and charge re/distribution mechanisms are evaluated using density functional theory (DFT) calculations and electrochemical impedance spectroscopy (EIS) measurements. The second uniqueness of this study relies on the multifunctional application of optimal chiral MXenes as potential nano-biostimulants for enhancing plant tolerance to different abiotic conditions, including severe drought, salinity, or light stress. This surface tailoring enables high biocompatibility with the seed/seedling/plant of Arabidopsis thaliana alongside promoting multi-bioactivities for enhanced seed-to-seedling transition, seedling germination/maturation, plant-induced stomatal closure, and ROS production eliciting responses. Given that the induced chirality is a pivotal factor in many agro-stimulants and amino acid-containing fertilizers for enhanced interaction with plant cells/enzymes, boosting stress tolerance, nutrient uptake, and growth, these findings open up new avenues toward multiple applications of chiral MXene biomaterials as next-generation carbon-based nano-biostimulants in agriculture.
这项工作展示了新兴的MXene纳米片及其衍生量子点在工程设计和生物应用方面的两项进展。首先,展示了一种简便、通用且普适的策略,用于在基于碳化钛的MXene(TiCT)表面诱导右手或左手手性,以形成具有增强的水性胶体分散性和抗脱粘耐受性的稳定混合低维手性MXene生物材料,模仿大多数生物分子和生物体的天然不对称生物结构。特别地,TiCT MXene纳米片用羧基末端进行功能化,并与D/L-半胱氨酸氨基酸配体可行地结合。这些二维-零维/一维手性MXene异质结构的物理化学表征表明,其中包含TiCT纳米片以及不同水平的自衍生MXene量子点和表面二氧化钛纳米颗粒,在经过数月测试后提供了增强的材料稳定性和抗氧化降解性。此外,使用密度泛函理论(DFT)计算和电化学阻抗谱(EIS)测量评估了半胱氨酸-TiCT/氧化钛界面处的相互作用和分子结合、相关离子传输和离子电导率分析以及电荷重新分布机制。本研究的第二个独特之处在于,最佳手性MXenes作为潜在的纳米生物刺激剂具有多功能应用,可增强植物对不同非生物条件的耐受性,包括严重干旱、盐度或光照胁迫。这种表面剪裁实现了与拟南芥种子/幼苗/植物的高生物相容性,同时促进多种生物活性,以增强种子到幼苗的转变、幼苗萌发/成熟、植物诱导的气孔关闭以及引发活性氧生成反应。鉴于诱导的手性是许多农业刺激剂和含氨基酸肥料中增强与植物细胞/酶相互作用、提高胁迫耐受性、养分吸收和生长的关键因素,这些发现为手性MXene生物材料作为下一代农业中基于碳的纳米生物刺激剂的多种应用开辟了新途径。