Suppr超能文献

基于嵌段共聚物的多孔碳纤维——合成、加工及应用

Block Copolymer Based Porous Carbon Fiber-Synthesis, Processing, and Applications.

作者信息

Zia Adeel, Zhang Yue, Parekh Akshara Paras, Liu Guoliang

机构信息

Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.

Department of Chemical Engineering, Department of Material Science and Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States.

出版信息

Acc Mater Res. 2025 Feb 2;6(3):366-378. doi: 10.1021/accountsmr.4c00404. eCollection 2025 Mar 28.

Abstract

Carbon is an abundant material with remarkable thermal, mechanical, physical, and chemical properties. Each allotrope has unique structures, properties, functionalities, and corresponding applications. Over the past few decades, various types of carbon materials such as graphene, carbon nanotubes, carbon quantum dots, and carbon fibers have been produced, finding applications in energy conversion and storage, water treatment, sensing, polymer composites, and biomedical fields. Among these carbon materials, porous carbons are highly interesting owing to their large surface areas and massive active sites to interact with molecules, ions, and other chemical species. The pore size and pore size distributions can be tunable (micro-, meso-, and macro-pores), providing chemical species with hierarchical structures to transport with low resistances. In this context, designing carbon precursors and preparing porous carbon with desired structures, properties, and functionalities are highly significant. Polymers are versatile carbon precursors. Designing the polymer precursors that facilitate the formation of well-controlled pores is an effective strategy to prepare porous carbons. In particular, porous carbon fibers (PCFs) in a fibrous format offer additional features of hierarchical porosity control, increased surface area, and fast ion transport. The most common approach to synthesizing PCFs is to use sacrificial agents (e.g., homopolymers of polystyrene (PS) and poly(methyl methacrylate) (PMMA), inorganic nanoparticles, and other additives) in a matrix of polyacrylonitrile (PAN) as the carbon fiber precursor. However, the nonuniform mixing of sacrificial agents in the PAN matrix results in PCFs with nonuniform pores and wide pore size distributions. Moreover, complete removal of the inorganic additives is challenging and sometimes requires the use of hazardous chemicals. Therefore, developing innovative methods for synthesizing PCFs is imperative to advance these engineering materials for emerging applications. In this Account, we summarize our efforts on the use of block copolymer precursors to prepare PCFs with tunable pore sizes and pore size distributions for a series of applications. First, we will introduce the synthesis methodologies for preparing PCFs. We have used reversible addition-fragmentation chain transfer (RAFT) polymerization to synthesize block copolymer precursors. Second, we will discuss the effects of preparation conditions on the properties of PCFs. The mechanical and electrical properties highly depend on the composition of the block copolymer, pyrolysis conditions, and humidity level during the fiber spinning process. Lastly, we will discuss the effects of controlled porosity on the surface area, electrical/ionic conductivity, and polymer-matrix interactions, which are crucial for applications including energy storage (e.g., batteries and supercapacitors), fiber-reinforced polymer composites, separation, and filtration.

摘要

碳是一种储量丰富的材料,具有出色的热学、力学、物理和化学性质。每种同素异形体都有独特的结构、性质、功能及相应的应用。在过去几十年里,人们制备出了各种类型的碳材料,如石墨烯、碳纳米管、碳量子点和碳纤维,并在能量转换与存储、水处理、传感、聚合物复合材料及生物医学领域得到应用。在这些碳材料中,多孔碳因其大表面积和大量可与分子、离子及其他化学物种相互作用的活性位点而备受关注。其孔径和孔径分布可以调节(微孔、介孔和大孔),为化学物种提供具有分级结构的低阻传输通道。在此背景下,设计碳前驱体并制备具有所需结构、性质和功能的多孔碳具有重要意义。聚合物是用途广泛的碳前驱体。设计有助于形成可控孔结构的聚合物前驱体是制备多孔碳的有效策略。特别是纤维状的多孔碳纤维(PCF)具有分级孔隙控制、表面积增加和离子快速传输等额外特性。合成PCF最常用的方法是在作为碳纤维前驱体的聚丙烯腈(PAN)基体中使用牺牲剂(如聚苯乙烯(PS)和聚甲基丙烯酸甲酯(PMMA)的均聚物、无机纳米颗粒及其他添加剂)。然而,牺牲剂在PAN基体中混合不均匀会导致PCF的孔隙不均匀且孔径分布较宽。此外,完全去除无机添加剂具有挑战性,有时还需要使用危险化学品。因此,开发合成PCF的创新方法对于推动这些工程材料在新兴应用中的发展至关重要。在本综述中,我们总结了利用嵌段共聚物前驱体制备具有可调孔径和孔径分布的PCF以用于一系列应用的相关工作。首先,我们将介绍制备PCF的合成方法。我们利用可逆加成-断裂链转移(RAFT)聚合反应合成嵌段共聚物前驱体。其次,我们将讨论制备条件对PCF性能的影响。其力学和电学性质高度依赖于嵌段共聚物的组成、热解条件以及纤维纺丝过程中的湿度水平。最后,我们将讨论可控孔隙率对表面积、电导率/离子电导率以及聚合物-基体相互作用的影响,这些对于包括能量存储(如电池和超级电容器)、纤维增强聚合物复合材料、分离和过滤等应用至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f35/11959516/e5633ab874a2/mr4c00404_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验