Suppr超能文献

在国家健康与营养检查调查中使用抑郁筛查工具进行患病率估计:不同临界值的比较。

Prevalence Estimation Using a Depression Screening Tool in the National Health and Nutrition Examination Survey: Comparison of Different Cutoffs.

作者信息

Köse Ali Mertcan, Petzold Paul, Zocholl Dario, Kostoulas Polychronis, Rose Matthias, Fischer Felix

机构信息

Department of Computer Programming, Istanbul Ticaret University, Istanbul, Turkey.

Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Medizinische Klinik Mit Schwerpunkt für Psychosomatik, Center for Patient-Centered Outcomes Research, Berlin, Germany.

出版信息

Int J Methods Psychiatr Res. 2025 Jun;34(2):e70019. doi: 10.1002/mpr.70019.

Abstract

OBJECTIVES

The National Health and Nutrition Examination Survey (NHANES) in the US relies on the depression screening tool PHQ-9 to assess depressive symptoms in the general population. For prevalence estimation, PHQ-9s imperfect diagnostic accuracy can be modeled with a Bayesian Latent Class Model. We investigate the impact of different cutoffs on prevalence estimation.

METHODS

We used data from the 16-th wave of the National Health and Nutrition Examination Survey (NHANES). We assessed the joint posterior distribution to asssess the prevalence of major depression as well as sensitivity and specificity of the PHQ-9 at cutoffs 5 to 15. We also assessed the impact of weakly and strongly informative prevalence priors.

RESULTS

Data from 9693 participants of the NHANES Wave 2019-2020 were analyzed. Under weakly informative prevalence priors, prevalence estimates ranged from 16.0% (95% CrI: 0.3%-87.8%) when using a cut-off of 5% to 3.9% (0.2%-12.7%) at 13. More informative prevalence priors led to narrower credible intervals, but the observed data was still in accordance with a wide range of possible MDD prevalence estimates.

CONCLUSIONS

Regardless of the cutoff and the prevalence prior chosen, prevalence estimation of major depressive disorders in the NHANES based on the PHQ-9 is imprecise.

摘要

目的

美国国家健康与营养检查调查(NHANES)依靠抑郁筛查工具PHQ-9来评估普通人群的抑郁症状。对于患病率估计,PHQ-9不完善的诊断准确性可以用贝叶斯潜在类别模型进行建模。我们研究了不同临界值对患病率估计的影响。

方法

我们使用了国家健康与营养检查调查第16轮(NHANES)的数据。我们评估了联合后验分布,以评估重度抑郁症的患病率以及PHQ-9在临界值5至15时的敏感性和特异性。我们还评估了弱信息性和强信息性患病率先验的影响。

结果

对NHANES 2019 - 2020轮9693名参与者的数据进行了分析。在弱信息性患病率先验下,患病率估计范围从临界值为5时的16.0%(95% CrI:0.3% - 87.8%)到临界值为13时的3.9%(0.2% - 12.7%)。信息性更强的患病率先验导致可信区间更窄,但观察到的数据仍与广泛的可能的重度抑郁症患病率估计一致。

结论

无论选择何种临界值和患病率先验,基于PHQ-9的NHANES中重度抑郁症的患病率估计都不准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f88d/11966556/e8166e56413a/MPR-34-e70019-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验