Singh Roushan Prakash, Quirion Kevin P, Telser Joshua, Ess Daniel H, Mankad Neal P
Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States.
J Am Chem Soc. 2025 Apr 16;147(15):12715-12721. doi: 10.1021/jacs.5c00944. Epub 2025 Apr 3.
Molecular chemistry of aluminum most commonly involves Al ions due to their noble gas electronic configurations. In contrast, the chemistry of Al ions is underexplored and may contain undiscovered reaction manifolds. Here, we report the CO activation chemistry of a transient Al intermediate supported by a chelating, dianionic ligand and investigate the electronic structure details and reaction mechanisms required to access this reactivity. We found that a heterobinuclear complex, (NON)Al-FeCp(CO) (), undergoes Al-Fe bond homolysis at ambient conditions to reveal the [(NON)Al]/[CpFe(CO)] radical pair . The presence of predominantly Al-centered spin density (i.e., an Al ion) within this radical pair was established by quantum-chemical calculations and with experiments in which radical scavengers (TEMPO, benzophenone) induce Al-Fe bond homolysis. Exposure of to CO atmosphere resulted in insertion of CO into the Al-Fe bond. This net 2-electron CO reduction process was computationally modeled using density functional theory and direct dynamics simulations, revealing that reduction involves two 1-electron steps and, thus, depends on stabilization of high-energy [CO] by coordination to aluminum. This mechanism for CO activation is unexpected given the canonical predisposition of CO for multielectron reduction processes and demonstrates the possibility of discovering new reaction profiles using earth-abundant elements in unusual oxidation states.
由于铝离子具有稀有气体电子构型,铝的分子化学通常涉及铝离子。相比之下,铝离子的化学性质尚未得到充分研究,可能包含未被发现的反应路径。在这里,我们报道了一种由螯合二价阴离子配体支撑的瞬态铝中间体的一氧化碳活化化学,并研究了实现这种反应活性所需的电子结构细节和反应机理。我们发现,一种异双核配合物(NON)Al-FeCp(CO) ()在环境条件下发生Al-Fe键均裂,生成[(NON)Al]/[CpFe(CO)]自由基对。通过量子化学计算以及自由基清除剂(TEMPO、二苯甲酮)诱导Al-Fe键均裂的实验,确定了该自由基对中主要以铝为中心的自旋密度(即铝离子)的存在。将 暴露于CO气氛中会导致CO插入Al-Fe键。使用密度泛函理论和直接动力学模拟对这个净2电子的CO还原过程进行了计算建模,结果表明还原过程涉及两个单电子步骤,因此取决于通过与铝配位来稳定高能[CO]。考虑到CO通常倾向于多电子还原过程,这种CO活化机制是出乎意料的,并且证明了利用处于不寻常氧化态的储量丰富的元素发现新反应途径的可能性。