Wei Zhipeng, Zhang Zhichun, Guo Liping, Zhou Wenjie, Yang Kehu
Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
Center for Evidence-based Social Science, School of Public Health, Lanzhou University, Lanzhou, China.
PLoS One. 2025 Apr 3;20(4):e0321153. doi: 10.1371/journal.pone.0321153. eCollection 2025.
This paper aims to examine the influence mechanism of education level as a key situational factor in the relationship between risk perception and behavioral response, encompassing both behavioral intention and preparatory behavior. Utilizing non-parametric estimation techniques in machine learning, particularly the Random Forest and XGBoost algorithms, this study develops predictive models to analyze the impact of 27 influencing factors on behavioral responses following risk perception. The findings indicate that, while the model's fit for preparatory behavior is 25.71% and its fit for behavioral intention is below 20%, the model effectively identifies key influencing factors. Further analysis employing SHAP values demonstrates that education level not only exerts a significant influence but also exhibits varying effects across different educational groups. Moreover, statistical testing corroborates the importance of education level in the relationship between risk perception and behavioral response, providing a robust scientific foundation for the development of risk management policies.
本文旨在探讨教育水平作为风险感知与行为反应(包括行为意图和准备行为)之间关系中的关键情境因素的影响机制。本研究利用机器学习中的非参数估计技术,特别是随机森林和XGBoost算法,开发预测模型,以分析27个影响因素对风险感知后行为反应的影响。研究结果表明,虽然该模型对准备行为的拟合度为25.71%,对行为意图的拟合度低于20%,但该模型有效地识别了关键影响因素。使用SHAP值的进一步分析表明,教育水平不仅具有显著影响,而且在不同教育群体中表现出不同的效果。此外,统计检验证实了教育水平在风险感知与行为反应关系中的重要性,为风险管理政策的制定提供了坚实的科学基础。