Bao Yanjun, Shi Hongsheng, Wei Rui, Wang Boyou, Zhou Zhou, Chen Yizhen, Qiu Cheng-Wei, Li Baojun
Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou 511443, China.
Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.
Nano Lett. 2025 Apr 16;25(15):6340-6347. doi: 10.1021/acs.nanolett.5c01292. Epub 2025 Apr 3.
Polarization and wavelength multiplexing are the two widely employed techniques to improve capacity in metasurfaces. While previous studies have pushed the channel numbers of each technique to its individual limits, achieving simultaneous limits of both techniques still presents challenges. Furthermore, current multiplexing methods often suffer from computational inefficiencies, hindering their applicability in computationally intensive tasks. In this work, we introduce and experimentally validate a gradient-based optimization algorithm using deep neural network (DNN) to achieve the limits of polarization and wavelength multiplexing with high computational efficiency. By leveraging the computational efficiency of the DNN-based method, we further implement nine multiplexed channels (three wavelengths × three polarizations) for large-scale image recognition tasks with a total of 36 classes in the single-layer metasurface. The classification accuracy reaches 96% in simulations and 91.5% in experiments. Our work sets a new benchmark for high-capacity multiplexing with gradient-based inverse design for advanced optical elements.
偏振复用和波长复用是超表面中广泛采用的两种提高容量的技术。虽然先前的研究已将每种技术的通道数推向各自的极限,但要同时实现这两种技术的极限仍面临挑战。此外,当前的复用方法常常存在计算效率低下的问题,这阻碍了它们在计算密集型任务中的应用。在这项工作中,我们引入并通过实验验证了一种基于梯度的优化算法,该算法使用深度神经网络(DNN)以高计算效率实现偏振复用和波长复用的极限。通过利用基于DNN方法的计算效率,我们进一步在单层超表面中为大规模图像识别任务实现了九个复用通道(三个波长×三个偏振),总共36个类别。在模拟中分类准确率达到96%,在实验中达到91.5%。我们的工作为使用基于梯度的逆向设计实现先进光学元件的高容量复用树立了新的标杆。