Suppr超能文献

利用复用超表面与全光衍射处理器进行多任务学习。

Leveraging multiplexed metasurfaces for multi-task learning with all-optical diffractive processors.

作者信息

Behroozinia Sahar, Gu Qing

机构信息

Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, 27695, USA.

Department of Physics, North Carolina State University, Raleigh, 27695, USA.

出版信息

Nanophotonics. 2024 Oct 30;13(24):4505-4517. doi: 10.1515/nanoph-2024-0483. eCollection 2024 Nov.

Abstract

Diffractive Neural Networks (DNNs) leverage the power of light to enhance computational performance in machine learning, offering a pathway to high-speed, low-energy, and large-scale neural information processing. However, most existing DNN architectures are optimized for single tasks and thus lack the flexibility required for the simultaneous execution of multiple tasks within a unified artificial intelligence platform. In this work, we utilize the polarization and wavelength degrees of freedom of light to achieve optical multi-task identification using the MNIST, FMNIST, and KMNIST datasets. Employing bilayer cascaded metasurfaces, we construct dual-channel DNNs capable of simultaneously classifying two tasks, using polarization and wavelength multiplexing schemes through a meta-atom library. Numerical evaluations demonstrate performance accuracies comparable to those of individually trained single-channel, single-task DNNs. Extending this approach to three-task parallel recognition reveals an expected performance decline yet maintains satisfactory classification accuracies of greater than 80 % for all tasks. We further introduce a novel end-to-end joint optimization framework to redesign the three-task classifier, demonstrating substantial improvements over the meta-atom library design and offering the potential for future multi-channel DNN designs. Our study could pave the way for the development of ultrathin, high-speed, and high-throughput optical neural computing systems.

摘要

衍射神经网络(DNNs)利用光的力量来提升机器学习中的计算性能,为高速、低能耗和大规模神经信息处理提供了一条途径。然而,大多数现有的DNN架构是针对单一任务进行优化的,因此缺乏在统一的人工智能平台内同时执行多个任务所需的灵活性。在这项工作中,我们利用光的偏振和波长自由度,使用MNIST、FMNIST和KMNIST数据集来实现光学多任务识别。通过采用双层级联超表面,我们构建了能够通过元原子库使用偏振和波长复用方案同时对两个任务进行分类的双通道DNN。数值评估表明,其性能精度与单独训练的单通道、单任务DNN相当。将这种方法扩展到三任务并行识别时,性能虽有预期下降,但所有任务的分类准确率仍保持在80%以上,令人满意。我们进一步引入了一种新颖的端到端联合优化框架来重新设计三任务分类器,相较于元原子库设计有显著改进,并为未来的多通道DNN设计提供了潜力。我们的研究可为超薄、高速和高通量光学神经计算系统的发展铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7022/11635945/2fc989e4571b/j_nanoph-2024-0483_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验