Suppr超能文献

从生态时间序列数据中发现随机动力学方程。

Discovering Stochastic Dynamical Equations from Ecological Time Series Data.

作者信息

Nabeel Arshed, Karichannavar Ashwin, Palathingal Shuaib, Jhawar Jitesh, Brückner David B, Raj M Danny, Guttal Vishwesha

出版信息

Am Nat. 2025 Apr;205(4):E100-E117. doi: 10.1086/734083. Epub 2025 Feb 27.

Abstract

AbstractTheoretical studies have shown that stochasticity can affect the dynamics of ecosystems in counterintuitive ways. However, without knowing the equations governing the dynamics of populations or ecosystems, it is difficult to ascertain the role of stochasticity in real datasets. Therefore, the inverse problem of inferring the governing stochastic equations from datasets is important. Here, we present an equation discovery methodology that takes time series data of state variables as input and outputs a stochastic differential equation. We achieve this by combining traditional approaches from stochastic calculus with the equation discovery techniques. We demonstrate the generality of the method via several applications. First, we deliberately choose various stochastic models with fundamentally different governing equations, yet they produce nearly identical steady-state distributions. We show that we can recover the correct underlying equations, and thus infer the structure of their stability, accurately from the analysis of time series data alone. We demonstrate our method on two real-world datasets-fish schooling and single-cell migration-that have vastly different spatiotemporal scales and dynamics. We illustrate various limitations and potential pitfalls of the method and how to overcome them via diagnostic measures. Finally, we provide our open-source code via a package named PyDaDDy (thon Library for ta-riven namics).

摘要

摘要

理论研究表明,随机性能够以违反直觉的方式影响生态系统的动态变化。然而,在不知道控制种群或生态系统动态变化的方程的情况下,很难确定随机性在实际数据集中所起的作用。因此,从数据集中推断控制随机方程的反问题具有重要意义。在此,我们提出一种方程发现方法,该方法将状态变量的时间序列数据作为输入,并输出一个随机微分方程。我们通过将随机微积分的传统方法与方程发现技术相结合来实现这一点。我们通过几个应用实例展示了该方法的通用性。首先,我们特意选择了具有根本不同控制方程的各种随机模型,但它们产生的稳态分布几乎相同。我们表明,仅通过对时间序列数据的分析,就能准确地恢复正确的基础方程,从而推断出其稳定性结构。我们在两个具有截然不同时空尺度和动态变化的真实世界数据集——鱼群游动和单细胞迁移数据集上演示了我们的方法。我们阐述了该方法的各种局限性和潜在陷阱,以及如何通过诊断措施来克服它们。最后,我们通过一个名为PyDaDDy(用于时间驱动动态的Python库)的软件包提供了我们的开源代码。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验