Suppr超能文献

从基于随机主体的模型模拟中学习微分方程模型。

Learning differential equation models from stochastic agent-based model simulations.

机构信息

North Carolina State University, Mathematics, Raleigh, NC, USA.

Mathematical Institute, University of Oxford, Oxford, UK.

出版信息

J R Soc Interface. 2021 Mar;18(176):20200987. doi: 10.1098/rsif.2020.0987. Epub 2021 Mar 17.

Abstract

Agent-based models provide a flexible framework that is frequently used for modelling many biological systems, including cell migration, molecular dynamics, ecology and epidemiology. Analysis of the model dynamics can be challenging due to their inherent stochasticity and heavy computational requirements. Common approaches to the analysis of agent-based models include extensive Monte Carlo simulation of the model or the derivation of coarse-grained differential equation models to predict the expected or averaged output from the agent-based model. Both of these approaches have limitations, however, as extensive computation of complex agent-based models may be infeasible, and coarse-grained differential equation models can fail to accurately describe model dynamics in certain parameter regimes. We propose that methods from the equation learning field provide a promising, novel and unifying approach for agent-based model analysis. Equation learning is a recent field of research from data science that aims to infer differential equation models directly from data. We use this tutorial to review how methods from equation learning can be used to learn differential equation models from agent-based model simulations. We demonstrate that this framework is easy to use, requires few model simulations, and accurately predicts model dynamics in parameter regions where coarse-grained differential equation models fail to do so. We highlight these advantages through several case studies involving two agent-based models that are broadly applicable to biological phenomena: a birth-death-migration model commonly used to explore cell biology experiments and a susceptible-infected-recovered model of infectious disease spread.

摘要

基于代理的模型提供了一个灵活的框架,常用于模拟许多生物系统,包括细胞迁移、分子动力学、生态学和流行病学。由于其固有的随机性和繁重的计算要求,对模型动力学的分析具有挑战性。对基于代理的模型的常见分析方法包括对模型进行广泛的蒙特卡罗模拟,或者推导出粗粒度的微分方程模型来预测基于代理的模型的预期或平均输出。然而,这两种方法都有其局限性,因为复杂的基于代理的模型的广泛计算可能是不可行的,而粗粒度的微分方程模型在某些参数范围内可能无法准确描述模型动力学。我们提出,来自方程学习领域的方法为基于代理的模型分析提供了一种有前途的、新颖的和统一的方法。方程学习是数据科学中的一个新兴研究领域,旨在直接从数据中推断微分方程模型。我们使用本教程来回顾如何从基于代理的模型模拟中学习微分方程模型的方程学习方法。我们证明了该框架易于使用,需要很少的模型模拟,并在粗粒度的微分方程模型无法做到的参数区域中准确地预测模型动力学。我们通过涉及两个广泛适用于生物现象的基于代理的模型的几个案例研究突出了这些优势:一个常用的用于探索细胞生物学实验的生死迁移模型,以及一个传染病传播的易感染-感染-恢复模型。

相似文献

1
Learning differential equation models from stochastic agent-based model simulations.
J R Soc Interface. 2021 Mar;18(176):20200987. doi: 10.1098/rsif.2020.0987. Epub 2021 Mar 17.
2
Reliable and efficient parameter estimation using approximate continuum limit descriptions of stochastic models.
J Theor Biol. 2022 Sep 21;549:111201. doi: 10.1016/j.jtbi.2022.111201. Epub 2022 Jun 22.
3
Forecasting and Predicting Stochastic Agent-Based Model Data with Biologically-Informed Neural Networks.
Bull Math Biol. 2024 Sep 23;86(11):130. doi: 10.1007/s11538-024-01357-2.
4
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
5
Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation.
J Chem Phys. 2006 Feb 28;124(8):084106. doi: 10.1063/1.2149854.
6
Coarse-grained analysis of stochastically simulated cell populations with a positive feedback genetic network architecture.
J Math Biol. 2015 Jun;70(7):1457-84. doi: 10.1007/s00285-014-0799-2. Epub 2014 Jun 15.
7
Learning black- and gray-box chemotactic PDEs/closures from agent based Monte Carlo simulation data.
J Math Biol. 2023 Jun 21;87(1):15. doi: 10.1007/s00285-023-01946-0.
8
Gene expression dynamics with stochastic bursts: Construction and exact results for a coarse-grained model.
Phys Rev E. 2016 Feb;93(2):022409. doi: 10.1103/PhysRevE.93.022409. Epub 2016 Feb 18.
9
Identifiability analysis for stochastic differential equation models in systems biology.
J R Soc Interface. 2020 Dec;17(173):20200652. doi: 10.1098/rsif.2020.0652. Epub 2020 Dec 16.

引用本文的文献

2
Control of medical digital twins with artificial neural networks.
Philos Trans A Math Phys Eng Sci. 2025 Mar 13;383(2292):20240228. doi: 10.1098/rsta.2024.0228.
3
Mathematical modeling of multicellular tumor spheroids quantifies inter-patient and intra-tumor heterogeneity.
NPJ Syst Biol Appl. 2025 Feb 15;11(1):20. doi: 10.1038/s41540-025-00492-3.
4
Data-driven model discovery and model selection for noisy biological systems.
PLoS Comput Biol. 2025 Jan 21;21(1):e1012762. doi: 10.1371/journal.pcbi.1012762. eCollection 2025 Jan.
5
Random walk models in the life sciences: including births, deaths and local interactions.
J R Soc Interface. 2025 Jan;22(222):20240422. doi: 10.1098/rsif.2024.0422. Epub 2025 Jan 15.
6
Optimal control of agent-based models via surrogate modeling.
PLoS Comput Biol. 2025 Jan 14;21(1):e1012138. doi: 10.1371/journal.pcbi.1012138. eCollection 2025 Jan.
7
Discrete and continuous mathematical models of sharp-fronted collective cell migration and invasion.
R Soc Open Sci. 2024 May 15;11(5):240126. doi: 10.1098/rsos.240126. eCollection 2024 May.
8
Linking discrete and continuous models of cell birth and migration.
R Soc Open Sci. 2024 Jul 17;11(7):232002. doi: 10.1098/rsos.232002. eCollection 2024 Jul.
9
Surrogate modeling and control of medical digital twins.
ArXiv. 2024 May 20:arXiv:2402.05750v2.
10
Inferring Stochastic Rates from Heterogeneous Snapshots of Particle Positions.
Bull Math Biol. 2024 May 13;86(6):74. doi: 10.1007/s11538-024-01301-4.

本文引用的文献

1
Neural network aided approximation and parameter inference of non-Markovian models of gene expression.
Nat Commun. 2021 May 11;12(1):2618. doi: 10.1038/s41467-021-22919-1.
2
Biologically-informed neural networks guide mechanistic modeling from sparse experimental data.
PLoS Comput Biol. 2020 Dec 1;16(12):e1008462. doi: 10.1371/journal.pcbi.1008462. eCollection 2020 Dec.
3
Learning Equations from Biological Data with Limited Time Samples.
Bull Math Biol. 2020 Sep 9;82(9):119. doi: 10.1007/s11538-020-00794-z.
4
Agent-based and continuous models of hopper bands for the Australian plague locust: How resource consumption mediates pulse formation and geometry.
PLoS Comput Biol. 2020 May 4;16(5):e1007820. doi: 10.1371/journal.pcbi.1007820. eCollection 2020 May.
5
COVID-19 R0: Magic number or conundrum?
Infect Dis Rep. 2020 Feb 24;12(1):8516. doi: 10.4081/idr.2020.8516. eCollection 2020 Feb 25.
6
Learning partial differential equations for biological transport models from noisy spatio-temporal data.
Proc Math Phys Eng Sci. 2020 Feb;476(2234):20190800. doi: 10.1098/rspa.2019.0800. Epub 2020 Feb 19.
7
Accurate and efficient discretizations for stochastic models providing near agent-based spatial resolution at low computational cost.
J R Soc Interface. 2019 Oct 31;16(159):20190421. doi: 10.1098/rsif.2019.0421. Epub 2019 Oct 23.
8
Bridging the gap between individual-based and continuum models of growing cell populations.
J Math Biol. 2020 Jan;80(1-2):343-371. doi: 10.1007/s00285-019-01391-y. Epub 2019 Jun 10.
9
Robust data-driven discovery of governing physical laws with error bars.
Proc Math Phys Eng Sci. 2018 Sep;474(2217):20180305. doi: 10.1098/rspa.2018.0305. Epub 2018 Sep 19.
10
AN EVOLUTIONARY MODEL OF TUMOR CELL KINETICS AND THE EMERGENCE OF MOLECULAR HETEROGENEITY DRIVING GOMPERTZIAN GROWTH.
SIAM Rev Soc Ind Appl Math. 2016;58(4):716-736. doi: 10.1137/15M1044825. Epub 2016 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验