Suppr超能文献

从基于随机主体的模型模拟中学习微分方程模型。

Learning differential equation models from stochastic agent-based model simulations.

机构信息

North Carolina State University, Mathematics, Raleigh, NC, USA.

Mathematical Institute, University of Oxford, Oxford, UK.

出版信息

J R Soc Interface. 2021 Mar;18(176):20200987. doi: 10.1098/rsif.2020.0987. Epub 2021 Mar 17.

Abstract

Agent-based models provide a flexible framework that is frequently used for modelling many biological systems, including cell migration, molecular dynamics, ecology and epidemiology. Analysis of the model dynamics can be challenging due to their inherent stochasticity and heavy computational requirements. Common approaches to the analysis of agent-based models include extensive Monte Carlo simulation of the model or the derivation of coarse-grained differential equation models to predict the expected or averaged output from the agent-based model. Both of these approaches have limitations, however, as extensive computation of complex agent-based models may be infeasible, and coarse-grained differential equation models can fail to accurately describe model dynamics in certain parameter regimes. We propose that methods from the equation learning field provide a promising, novel and unifying approach for agent-based model analysis. Equation learning is a recent field of research from data science that aims to infer differential equation models directly from data. We use this tutorial to review how methods from equation learning can be used to learn differential equation models from agent-based model simulations. We demonstrate that this framework is easy to use, requires few model simulations, and accurately predicts model dynamics in parameter regions where coarse-grained differential equation models fail to do so. We highlight these advantages through several case studies involving two agent-based models that are broadly applicable to biological phenomena: a birth-death-migration model commonly used to explore cell biology experiments and a susceptible-infected-recovered model of infectious disease spread.

摘要

基于代理的模型提供了一个灵活的框架,常用于模拟许多生物系统,包括细胞迁移、分子动力学、生态学和流行病学。由于其固有的随机性和繁重的计算要求,对模型动力学的分析具有挑战性。对基于代理的模型的常见分析方法包括对模型进行广泛的蒙特卡罗模拟,或者推导出粗粒度的微分方程模型来预测基于代理的模型的预期或平均输出。然而,这两种方法都有其局限性,因为复杂的基于代理的模型的广泛计算可能是不可行的,而粗粒度的微分方程模型在某些参数范围内可能无法准确描述模型动力学。我们提出,来自方程学习领域的方法为基于代理的模型分析提供了一种有前途的、新颖的和统一的方法。方程学习是数据科学中的一个新兴研究领域,旨在直接从数据中推断微分方程模型。我们使用本教程来回顾如何从基于代理的模型模拟中学习微分方程模型的方程学习方法。我们证明了该框架易于使用,需要很少的模型模拟,并在粗粒度的微分方程模型无法做到的参数区域中准确地预测模型动力学。我们通过涉及两个广泛适用于生物现象的基于代理的模型的几个案例研究突出了这些优势:一个常用的用于探索细胞生物学实验的生死迁移模型,以及一个传染病传播的易感染-感染-恢复模型。

相似文献

引用本文的文献

2
Control of medical digital twins with artificial neural networks.利用人工神经网络控制医学数字孪生体。
Philos Trans A Math Phys Eng Sci. 2025 Mar 13;383(2292):20240228. doi: 10.1098/rsta.2024.0228.
4
Data-driven model discovery and model selection for noisy biological systems.针对有噪声的生物系统的数据驱动模型发现与模型选择
PLoS Comput Biol. 2025 Jan 21;21(1):e1012762. doi: 10.1371/journal.pcbi.1012762. eCollection 2025 Jan.
6
Optimal control of agent-based models via surrogate modeling.通过代理建模实现基于智能体模型的最优控制。
PLoS Comput Biol. 2025 Jan 14;21(1):e1012138. doi: 10.1371/journal.pcbi.1012138. eCollection 2025 Jan.
8
Linking discrete and continuous models of cell birth and migration.连接细胞生成与迁移的离散模型和连续模型。
R Soc Open Sci. 2024 Jul 17;11(7):232002. doi: 10.1098/rsos.232002. eCollection 2024 Jul.

本文引用的文献

5
COVID-19 R0: Magic number or conundrum?新冠病毒传播系数(R0):神奇数字还是难题?
Infect Dis Rep. 2020 Feb 24;12(1):8516. doi: 10.4081/idr.2020.8516. eCollection 2020 Feb 25.
9
Robust data-driven discovery of governing physical laws with error bars.通过误差线对控制物理定律进行稳健的数据驱动发现。
Proc Math Phys Eng Sci. 2018 Sep;474(2217):20180305. doi: 10.1098/rspa.2018.0305. Epub 2018 Sep 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验