Chang Jin-Soo, Kim Won-Seok
Molecular Biogeochemistry Laboratory, Biological & Genetic Resources Institute (BGRI), Sejong, Republic of Korea.
Research Institute, NCSQUARE co., Nam-gu, Pohang, Republic of Korea; Division of Advanced Nuclear Engineering, POSTECH, 77, Cheongam-ro, Nam-gu, Pohang, Republic of Korea.
Chemosphere. 2025 May;377:144330. doi: 10.1016/j.chemosphere.2025.144330. Epub 2025 Apr 3.
Iron pipe corrosion can be caused by tap water contamination with arsenic (As), heavy metals, and symbiotic microorganisms. In this study, we performed laboratory experiments on drinking water samples collected from Yanbian University of Science and Technology, Jilin Province, eastern China, to evaluate the mechanism of heavy metal oxidation by microbes. The experiments revealed corrosion of the entire water pipe, heavy metal contamination, and microbial co-oxidation of As(III), iron (Fe(II)), and manganese (Mn(II)). Pipe corrosion was observed in several university buildings, with particularly high levels of As (4.3 μg/L), Fe (143.4 μg/L), Mn (0.6 μg/L), and bacteria (1,200 CFU/100 mL) in the Engineering building. The As(III), Fe(II), and Mn(II) co-oxidation activity of As(III)-resistant and Fe(II)- and Mn(II)-oxidizing bacteria was investigated based on frvA, aioE, boxA, arsB, and arxB gene activities in Burkholderia glathei strain YUST-DW12 (NCBI accession No.: HM640291). Batch experiments revealed that YUST-DW12 completely co-oxidized 1 mM As(III) to As(V), 5 mM Fe(II) to Fe(III), and 5 mM Mn(II) to Mn(IV) within 45-50 h, 10 h, and 25 h, respectively. Co-oxidation related to arxB gene activity significantly contributed to As, Fe, and Mn bioremediation and mobility in tap water, indicating that As, Fe, and Mn oxidases in bacteria control the biogeochemical cycle of contaminated public tap water affected by iron pipe corrosion. This research provides novel insights into the role of microbial arxB in As(III), Fe(II), and Mn(II) co-oxidation in corroded iron pipes, enhancing our understanding of the co-oxidative removal of As from contaminated tap and bottled water.
铁管腐蚀可能由砷(As)、重金属和共生微生物污染的自来水引起。在本研究中,我们对从中国东部吉林省延边科技大学采集的饮用水样本进行了实验室实验,以评估微生物对重金属的氧化机制。实验揭示了整个水管的腐蚀、重金属污染以及As(III)、铁(Fe(II))和锰(Mn(II))的微生物共氧化现象。在几所大学建筑中观察到了水管腐蚀现象,其中工程楼中的As(4.3μg/L)、Fe(143.4μg/L)、Mn(0.6μg/L)和细菌(1200 CFU/100 mL)含量特别高。基于glathei伯克霍尔德菌菌株YUST-DW12(NCBI登录号:HM640291)中的frvA、aioE、boxA、arsB和arxB基因活性,研究了抗As(III)以及具有Fe(II)和Mn(II)氧化能力的细菌的As(III)、Fe(II)和Mn(II)共氧化活性。批次实验表明,YUST-DW12分别在45 - 50小时、10小时和25小时内将1 mM As(III)完全共氧化为As(V)、5 mM Fe(II)完全共氧化为Fe(III)、5 mM Mn(II)完全共氧化为Mn(IV)。与arxB基因活性相关的共氧化对自来水中As、Fe和Mn的生物修复及迁移有显著贡献,表明细菌中的As、Fe和Mn氧化酶控制着受铁管腐蚀影响的受污染公共自来水的生物地球化学循环。本研究为微生物arxB在腐蚀铁管中As(III)、Fe(II)和Mn(II)共氧化中的作用提供了新的见解,加深了我们对从受污染的自来水和瓶装水中共氧化去除As的理解。