Suppr超能文献

利用80传感器光泵磁力计脑磁图(OPM-MEG)促进认知神经科学研究。

Facilitating cognitive neuroscience research with 80-sensor optically pumped magnetometer magnetoencephalography (OPM-MEG).

作者信息

Xu Wei, Liao Pan, Cao Miao, White David J, Lyu Bingjiang, Gao Jia-Hong

机构信息

Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Changping Laboratory, Beijing, 102206, China.

Centre for Mental Health & Brain Sciences, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.

出版信息

Neuroimage. 2025 May 1;311:121182. doi: 10.1016/j.neuroimage.2025.121182. Epub 2025 Apr 1.

Abstract

Recent advancements in optically pumped magnetometer magnetoencephalography (OPM-MEG) make it a promising alternative to conventional SQUID-MEG systems. Nonetheless, as reported in the literature, current OPM-MEG systems are often constrained by a limited number of sampling points, which restricts their capability to match the full-head coverage offered by SQUID-MEG systems. Additionally, whether OPM-MEG can deliver results comparable to SQUID-MEG in practical cognitive neuroscience applications remains largely unexplored. In this study, we introduce a high-density, full-head coverage OPM-MEG system with 80 sensors and systematically compare the performance of OPM-MEG and SQUID-MEG, from sensor- to source-level analysis, across various classic cognitive tasks. Our results demonstrate that visual and auditory evoked fields captured using OPM-MEG align closely with those obtained from SQUID-MEG. Furthermore, steady-state visual evoked field and finger-tapping-induced beta power change recorded with OPM-MEG are accurately localized to corresponding brain regions, with activation centers highly congruent to those observed with SQUID-MEG. For resting-state recordings, the two modalities exhibit similar power distributions, functional connectomes, and microstate clusters. These findings indicate that the 80-sensor OPM-MEG system provides spatial and temporal characteristics comparable to those of traditional SQUID-MEG. Thus, our study offers empirical evidence supporting the efficacy of high-density OPM-MEG and suggests that OPM-MEG, with dense sampling capability, represents a compelling alternative to conventional SQUID-MEG, facilitating further exploration of human cognition.

摘要

光泵磁力计脑磁图(OPM-MEG)的最新进展使其成为传统超导量子干涉仪脑磁图(SQUID-MEG)系统的一个有前景的替代方案。尽管如此,正如文献中所报道的,当前的OPM-MEG系统常常受到采样点数量有限的限制,这限制了它们与SQUID-MEG系统提供的全头覆盖能力相匹配的能力。此外,在实际的认知神经科学应用中,OPM-MEG能否提供与SQUID-MEG相当的结果在很大程度上仍未得到探索。在本研究中,我们引入了一种具有80个传感器的高密度、全头覆盖的OPM-MEG系统,并系统地比较了OPM-MEG和SQUID-MEG在各种经典认知任务中从传感器级到源级分析的性能。我们的结果表明,使用OPM-MEG捕获的视觉和听觉诱发场与从SQUID-MEG获得的诱发场紧密对齐。此外,用OPM-MEG记录的稳态视觉诱发场和手指敲击诱发的β功率变化被准确地定位到相应的脑区,激活中心与用SQUID-MEG观察到的高度一致。对于静息状态记录,这两种模式表现出相似的功率分布、功能连接组和微状态簇。这些发现表明,80传感器的OPM-MEG系统提供了与传统SQUID-MEG相当的空间和时间特征。因此,我们的研究提供了支持高密度OPM-MEG有效性的实证证据,并表明具有密集采样能力的OPM-MEG是传统SQUID-MEG的一个有吸引力的替代方案,有助于进一步探索人类认知。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验