Song Young-Bo, Park Bo-Ram, Chewaka Legesse Shiferaw, Park Ji Yeong, Lee Seul, Baek Seung-Min, Lee Byung-Hoo
Department of Food Science & Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea.
Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea.
Int J Biol Macromol. 2025 May;308(Pt 4):142779. doi: 10.1016/j.ijbiomac.2025.142779. Epub 2025 Apr 1.
Slowly digestible carbohydrates have gained significant attention as functional ingredients for regulating blood glucose homeostasis, modulating appetite, and reducing the risk of obesity and type 2 diabetes. In this study, we explored a bioconversion strategy using Gluconobacter oxydans ATCC 11894 to synthesize polysaccharides with a high proportion of α-1,6 glycosidic linkages from maltodextrins. The bioconversion process effectively generates distinct polysaccharide fractions, including high-molecular-weight dextran, isomaltomegalosaccharides (IMSs), and low-molecular-weight byproducts, each with unique structural properties. IMSs, characterized by a complex network of α-1,4 and α-1,6 linkages, demonstrated significantly reduced susceptibility to mammalian α-glucosidase and slower enzymatic hydrolysis rates compared to dextran. Both in vitro and in vivo evaluations revealed that the polysaccharides modified through bioconversion, particularly the IMS-enriched fractions, effectively attenuated postprandial glucose spikes, prolonged glucose release, and sustained glucose availability. The unfractionated polysaccharides modified through bioconversion also showed promising potential for modulating glycemic responses, providing sustained energy release, and reducing the metabolic risks associated with hyperglycemia. Notably, this bioconversion process utilizes crude maltodextrins without requiring enzyme extraction or purified substrates, ensuring industrial scalability. These findings highlight the potential of G. oxydans-mediated bioconversion as a viable strategy for developing functional carbohydrate-based materials aimed at glycemic control and metabolic health.
缓慢消化的碳水化合物作为调节血糖稳态、调节食欲以及降低肥胖和2型糖尿病风险的功能性成分,已受到广泛关注。在本研究中,我们探索了一种生物转化策略,利用氧化葡萄糖杆菌ATCC 11894从麦芽糊精合成具有高比例α-1,6糖苷键的多糖。该生物转化过程有效地产生了不同的多糖组分,包括高分子量葡聚糖、异麦芽低聚糖(IMSs)和低分子量副产物,每种都具有独特的结构特性。IMSs以α-1,4和α-1,6键的复杂网络为特征,与葡聚糖相比,其对哺乳动物α-葡萄糖苷酶的敏感性显著降低,酶促水解速率较慢。体外和体内评估均表明,通过生物转化修饰的多糖,特别是富含IMS的组分,有效地减弱了餐后血糖峰值,延长了葡萄糖释放,并维持了葡萄糖的可用性。通过生物转化修饰的未分级多糖在调节血糖反应、提供持续能量释放以及降低与高血糖相关的代谢风险方面也显示出有前景的潜力。值得注意的是,这种生物转化过程利用粗麦芽糊精,无需酶提取或纯化底物,确保了工业可扩展性。这些发现突出了氧化葡萄糖杆菌介导的生物转化作为开发旨在控制血糖和代谢健康的功能性碳水化合物基材料的可行策略的潜力。