Li Zhengyuan, Li Xing, Wang Ruoyu, Campos Mata Astrid, Gerke Carter S, Xiang Shuting, Mathur Anmol, Zhang Lingyu, Lin Dian-Zhao, Li Tianchen, Jayarapu Krish N, Liu Andong, Gupta Lavanya, Frenkel Anatoly I, Thoi V Sara, Ajayan Pulickel M, Roy Soumyabrata, Liu Yuanyue, Liu Yayuan
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
Department of Chemistry, City University of Hong Kong, Hong Kong, China.
Nat Commun. 2025 Apr 3;16(1):3206. doi: 10.1038/s41467-025-58593-w.
The electrochemical reduction of carbon dioxide (CO) to carbon monoxide (CO) is challenged by a selectivity decline at high current densities. Here we report a class of indigo-based molecular promoters with redox-active CO binding sites to enhance the high-rate conversion of CO to CO on silver (Ag) catalysts. Theoretical calculations and in situ spectroscopy analyses demonstrate that the synergistic effect at the interface of indigo-derived compounds and Ag nanoparticles could activate CO molecules and accelerate the formation of key intermediates (*CO and *COOH) in the CO pathway. Indigo derivatives with electron-withdrawing groups further reduce the overpotential for CO production upon optimizing the interfacial CO binding affinity. By integrating the molecular design of redox-active centres with the defect engineering of Ag structures, we achieve a Faradaic efficiency for CO exceeding 90% across a current density range of 0.10 - 1.20 A cm. The Ag mass activity toward CO increases to 174 A mg. This work showcases that employing redox-active CO sorbents as surface modification agents is a highly effective strategy to intensify the reactivity of electrochemical CO reduction.
将二氧化碳(CO₂)电化学还原为一氧化碳(CO)面临着高电流密度下选择性下降的挑战。在此,我们报道了一类具有氧化还原活性CO结合位点的靛蓝基分子促进剂,以增强银(Ag)催化剂上CO₂到CO的高速率转化。理论计算和原位光谱分析表明,靛蓝衍生化合物与Ag纳米颗粒界面处的协同效应可激活CO分子,并加速CO₂还原途径中关键中间体(CO和COOH)的形成。具有吸电子基团的靛蓝衍生物在优化界面CO结合亲和力后,进一步降低了CO生成的过电位。通过将氧化还原活性中心的分子设计与Ag结构的缺陷工程相结合,我们在0.10 - 1.20 A cm⁻²的电流密度范围内实现了CO的法拉第效率超过90%。Ag对CO的质量活性提高到174 A mg⁻¹。这项工作表明,使用氧化还原活性CO吸附剂作为表面改性剂是增强电化学CO₂还原反应活性的一种非常有效的策略。