Suppr超能文献

用于CO电解的气体扩散电极上电解质依赖性碳酸盐形成的研究。

Investigation of Electrolyte-Dependent Carbonate Formation on Gas Diffusion Electrodes for CO Electrolysis.

作者信息

Cofell Emiliana R, Nwabara Uzoma O, Bhargava Saket S, Henckel Danielle E, Kenis Paul J A

出版信息

ACS Appl Mater Interfaces. 2021 Apr 7;13(13):15132-15142. doi: 10.1021/acsami.0c21997. Epub 2021 Mar 25.

Abstract

The electrochemical reduction of CO (ECOR) is a promising method for reducing CO emissions and producing carbon-neutral fuels if long-term durability of electrodes can be achieved by identifying and addressing electrode degradation mechanisms. This work investigates the degradation of gas diffusion electrodes (GDEs) in a flowing, alkaline CO electrolyzer via the formation of carbonate deposits on the GDE surface. These carbonate deposits were found to impede electrode performance after only 6 h of operation at current densities ranging from -50 to -200 mA cm. The rate of carbonate deposit formation on the GDE surface was determined to increase with increasing electrolyte molarity and became more prevalent in K-containing as opposed to Cs-containing electrolytes. Electrolyte composition and concentration also had significant effects on the morphology, distribution, and surface coverage of the carbonate deposits. For example, carbonates formed in K-containing electrolytes formed concentrated deposit regions of varying morphology on the GDE surface, while those formed in Cs-containing electrolytes appeared as small crystals, well dispersed across the electrode surface. Both deposits occluding the catalyst layer surface and those found within the microporous layer and carbon fiber substrate of the electrode were found to diminish performance in ECOR, leading to rapid loss of CO production after ∼50% of the catalyst layer surface was occluded. Additionally, carbonate deposits reduced GDE hydrophobicity, leading to increased flooding and internal deposits within the GDE substrate. Electrolyte engineering-based solutions are suggested for improved GDE durability in future work.

摘要

如果能够通过识别和解决电极降解机制来实现电极的长期耐用性,那么电化学还原CO(ECOR)是一种减少CO排放和生产碳中和燃料的有前景的方法。这项工作通过在气体扩散电极(GDE)表面形成碳酸盐沉积物,研究了流动碱性CO电解槽中GDE的降解情况。发现在-50至-200 mA cm的电流密度下仅运行6小时后,这些碳酸盐沉积物就会阻碍电极性能。确定GDE表面碳酸盐沉积物的形成速率随电解质摩尔浓度的增加而增加,并且在含K的电解质中比在含Cs的电解质中更普遍。电解质的组成和浓度对碳酸盐沉积物的形态、分布和表面覆盖率也有显著影响。例如,在含K电解质中形成的碳酸盐在GDE表面形成形态各异的浓缩沉积区域,而在含Cs电解质中形成的碳酸盐则表现为小晶体,均匀分散在电极表面。发现在ECOR中,堵塞催化剂层表面的沉积物以及在电极的微孔层和碳纤维基材中发现的沉积物都会降低性能,导致在约50%的催化剂层表面被堵塞后CO产量迅速下降。此外,碳酸盐沉积物降低了GDE的疏水性,导致GDE基材内的水淹和内部沉积物增加。建议在未来的工作中采用基于电解质工程学的解决方案来提高GDE的耐用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验