Griffin Sarah L, Meekel Emily G, Bulled Johnathan M, Canossa Stefano, Wahrhaftig-Lewis Alexander, Schmidt Ella M, Champness Neil R
School of Chemistry, University of Birmingham, Birmingham, UK.
Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan.
Nat Commun. 2025 Apr 3;16(1):3209. doi: 10.1038/s41467-025-58402-4.
Structural disorder can be used to tune the properties of functional materials and is an important tool that can be employed for the development of complex framework materials, such as metal-organic frameworks. Here we show the synthesis and structural characterization of a metal-organic framework, UoB-100(Dy). Average structure refinements indicate that the node is disordered between two orientations of the nonanuclear secondary building unit (SBU). By performing 3D diffuse scattering (DS) analysis and Monte Carlo (MC) simulations, we confirm the presence of strong correlations between the metal clusters of UoB-100(Dy). These nodes assemble into a complex nanodomain structure. Quantum mechanical calculations identify linker strain as the driving force behind the nanodomain structure. The implications of such a nanodomain structure for the magnetic, gas storage, and mechanical properties of lanthanide MOFs are discussed.
结构无序可用于调节功能材料的性能,是开发复杂框架材料(如金属有机框架)的重要工具。在此,我们展示了一种金属有机框架UoB-100(Dy)的合成与结构表征。平均结构精修表明,节点在九核二级构筑单元(SBU)的两种取向之间无序。通过进行三维漫散射(DS)分析和蒙特卡罗(MC)模拟,我们证实了UoB-100(Dy)的金属簇之间存在强相关性。这些节点组装成复杂的纳米域结构。量子力学计算确定连接体应变是纳米域结构背后的驱动力。讨论了这种纳米域结构对镧系金属有机框架的磁性、气体储存和力学性能的影响。