Billah Tashrif, Cho Kang Ik K, Borders Owen, Chung Yoonho, Ennis Michaela, Jacobs Grace R, Liebenthal Einat, Mathalon Daniel H, Mohandass Dheshan, Nicholas Spero C, Pasternak Ofer, Penzel Nora, Eichi Habiballah Rahimi, Wolff Phillip, Anticevic Alan, Laulette Kristen, Nunez Angela R, Tamayo Zailyn, Buccilli Kate, Colton Beau-Luke, Dwyer Dominic B, Hendricks Larry, Yuen Hok Pan, Spark Jessica, Tod Sophie, Carrington Holly, Chen Justine T, Coleman Michael J, Corcoran Cheryl M, Haidar Anastasia, John Omar, Kelly Sinead, Marcy Patricia J, Matneja Priya, McGowan Alessia, Ray Susan E, Veale Simone, Winter-Van Rossum Inge, Addington Jean, Allott Kelly A, Calkins Monica E, Clark Scott R, Gur Ruben C, Harms Michael P, Perkins Diana O, Ruparel Kosha, Stone William S, Torous John, Yung Alison R, Zoupou Eirini, Fusar-Poli Paolo, Mittal Vijay A, Shah Jai L, Wolf Daniel H, Cecchi Guillermo, Kapur Tina, Kubicki Marek, Lewandowski Kathryn Eve, Bearden Carrie E, McGorry Patrick D, Kahn René S, Kane John M, Nelson Barnaby, Woods Scott W, Shenton Martha E, Baker Justin T, Bouix Sylvain
Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
Schizophrenia (Heidelb). 2025 Apr 3;11(1):55. doi: 10.1038/s41537-025-00560-x.
Modern research management, particularly for publicly funded studies, assumes a data governance model in which grantees are considered stewards rather than owners of important data sets. Thus, there is an expectation that collected data are shared as widely as possible with the general research community. This presents problems in complex studies that involve sensitive health information. The latter requires balancing participant privacy with the needs of the research community. Here, we report on the data operation ecosystem crafted for the Accelerating Medicines Partnership® Schizophrenia project, an international observational study of young individuals at clinical high risk for developing a psychotic disorder. We review data capture systems, data dictionaries, organization principles, data flow, security, quality control protocols, data visualization, monitoring, and dissemination through the NIMH Data Archive platform. We focus on the interconnectedness of these steps, where our goal is to design a seamless data flow and an alignment with the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles while balancing local regulatory and ethical considerations. This process-oriented approach leverages automated pipelines for data flow to enhance data quality, speed, and collaboration, underscoring the project's contribution to advancing research practices involving multisite studies of sensitive mental health conditions. An important feature is the data's close-to-real-time quality assessment (QA) and quality control (QC). The focus on close-to-real-time QA/QC makes it possible for a subject to redo a testing session, as well as facilitate course corrections to prevent repeating errors in future data acquisition. Watch Dr. Sylvain Bouix discuss his work and this article: https://vimeo.com/1025555648 .
现代研究管理,尤其是针对公共资助的研究,采用了一种数据治理模式,在这种模式下,受资助者被视为重要数据集的管理者而非所有者。因此,人们期望所收集的数据能尽可能广泛地与整个研究群体共享。这在涉及敏感健康信息的复杂研究中带来了问题。后者需要在参与者隐私与研究群体的需求之间取得平衡。在此,我们报告为加速药物合作组织精神分裂症项目精心打造的数据操作生态系统,该项目是一项针对有发展为精神障碍临床高风险的年轻人的国际观察性研究。我们回顾了数据捕获系统、数据字典、组织原则、数据流、安全性、质量控制协议、数据可视化、监测以及通过美国国立精神卫生研究所数据存档平台进行的传播。我们关注这些步骤之间的相互关联性,我们的目标是设计出无缝的数据流,并使其符合FAIR(可查找、可访问、可互操作和可重用)原则,同时平衡当地的监管和伦理考量。这种面向过程的方法利用自动化管道进行数据流处理,以提高数据质量、速度和协作性,凸显了该项目对推进涉及敏感心理健康状况多中心研究的研究实践所做的贡献。一个重要特点是对数据进行近乎实时的质量评估(QA)和质量控制(QC)。对近乎实时的QA/QC的关注使得受试者能够重新进行测试环节,也便于进行过程修正以防止在未来的数据采集过程中重复出现错误。观看西尔万·布伊克斯博士讨论他的工作及本文:https://vimeo.com/1025555648 。