Beth Israel Deaconess Medical Center, Boston, MA, United States.
Mayo Clinic, Rochester, MN, United States.
JMIR Mhealth Uhealth. 2022 Jan 7;10(1):e30557. doi: 10.2196/30557.
There is a growing need for the integration of patient-generated health data (PGHD) into research and clinical care to enable personalized, preventive, and interactive care, but technical and organizational challenges, such as the lack of standards and easy-to-use tools, preclude the effective use of PGHD generated from consumer devices, such as smartphones and wearables.
This study outlines how we used mobile apps and semantic web standards such as HTTP 2.0, Representational State Transfer, JSON (JavaScript Object Notation), JSON Schema, Transport Layer Security (version 1.3), Advanced Encryption Standard-256, OpenAPI, HTML5, and Vega, in conjunction with patient and provider feedback to completely update a previous version of mindLAMP.
The Learn, Assess, Manage, and Prevent (LAMP) platform addresses the abovementioned challenges in enhancing clinical insight by supporting research, data analysis, and implementation efforts around PGHD as an open-source solution with freely accessible and shared code.
With a simplified programming interface and novel data representation that captures additional metadata, the LAMP platform enables interoperability with existing Fast Healthcare Interoperability Resources-based health care systems as well as consumer wearables and services such as Apple HealthKit and Google Fit. The companion Cortex data analysis and machine learning toolkit offer robust support for artificial intelligence, behavioral feature extraction, interactive visualizations, and high-performance data processing through parallelization and vectorization techniques.
The LAMP platform incorporates feedback from patients and clinicians alongside a standards-based approach to address these needs and functions across a wide range of use cases through its customizable and flexible components. These range from simple survey-based research to international consortiums capturing multimodal data to simple delivery of mindfulness exercises through personalized, just-in-time adaptive interventions.
将患者生成的健康数据(PGHD)集成到研究和临床护理中以实现个性化、预防性和互动式护理的需求日益增长,但技术和组织方面的挑战,如缺乏标准和易于使用的工具,妨碍了有效利用来自智能手机和可穿戴设备等消费者设备生成的 PGHD。
本研究概述了我们如何使用移动应用程序和语义 Web 标准(如 HTTP 2.0、表述性状态转移、JSON(JavaScript 对象表示法)、JSON 模式、传输层安全(版本 1.3)、高级加密标准-256、OpenAPI、HTML5 和 Vega),结合患者和提供者的反馈,对以前版本的 mindLAMP 进行全面更新。
Learn、Assess、Manage 和 Prevent(LAMP)平台通过支持研究、数据分析和实施围绕 PGHD 的工作,作为具有免费访问和共享代码的开源解决方案,解决了上述增强临床洞察力方面的挑战。
通过简化编程接口和新颖的数据表示形式,该 LAMP 平台可与基于 Fast Healthcare Interoperability Resources 的现有医疗保健系统以及 Apple HealthKit 和 Google Fit 等消费者可穿戴设备和服务实现互操作。配套的 Cortex 数据分析和机器学习工具包通过并行化和矢量化技术为人工智能、行为特征提取、交互式可视化和高性能数据处理提供了强大支持。
LAMP 平台结合了患者和临床医生的反馈以及基于标准的方法,通过其可定制和灵活的组件来满足这些需求并在广泛的用例中发挥作用。这些组件的范围从基于简单调查的研究到国际联盟捕获多模态数据,再到通过个性化、即时自适应干预简单传递正念练习。