Abdelrahman Kamal
Department of Geology and Geophysics, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
Sci Rep. 2025 Apr 3;15(1):11497. doi: 10.1038/s41598-025-90894-4.
Shear wave velocity (Vs) is an essential parameter for soil strength and mechanical properties of rocks. Twenty profiles of multichannel analysis of surface waves (MASW), five microtremor measurements, and two geotechnical boreholes have been conducted at the King Saud University site. According to the National Earthquake Hazards Reduction Program classification, the results indicated three distinct layers. The first layer is comprised of silty sand with gravel and thickness ranges of 4-14 m of shear wave velocity (Vs) from 400 to 760 m/s, indicating site C class; the second layer features highly weathered limestone where Vs varies between 760 and 1500 m/s refers B class, while the third layer consists of compact/massive limestone where Vs varies from 1500 to 3500 m/s representing site A class. The bedrock varies in depth from south to north, showing the shallowest depth in the central zone. Moreover, the estimated shear wave velocity and bedrock depth from microtremor measurements agree with MASW results. These results specified distinct weak zones at depths ranging from 2 to 25 m through the study area, emphasizing potential geotechnical concerns associated with these weak zones. Integrating shear wave velocity and microtremor measurements is crucial for advancing sustainable urban development by providing more informed design choices considering local soil conditions. This highlights the significance of geophysical techniques in supporting sustainable development initiatives.
剪切波速(Vs)是衡量土壤强度和岩石力学性质的一个重要参数。在沙特国王大学的场地进行了20条多通道面波分析(MASW)剖面、5次微震测量以及2个岩土钻孔的探测。根据美国国家地震减灾计划分类,结果显示出三个不同的地层。第一层由含砾粉质砂土组成,厚度范围为4 - 14米,剪切波速(Vs)为400至760米/秒,属于C类场地;第二层为强风化石灰岩,Vs在760至1500米/秒之间变化,属于B类场地,而第三层由致密/块状石灰岩组成,Vs从1500至3500米/秒不等,代表A类场地。基岩深度从南到北变化,在中心区域最浅。此外,通过微震测量估算的剪切波速和基岩深度与MASW结果一致。这些结果明确了研究区域内深度在2至25米范围内存在明显的薄弱带,强调了与这些薄弱带相关的潜在岩土工程问题。结合剪切波速和微震测量对于推进可持续城市发展至关重要,因为它能根据当地土壤条件提供更明智的设计选择。这凸显了地球物理技术在支持可持续发展倡议方面的重要性。