Georgiev Miroslav, Chamati Hassan
Institute of Mathematics and Informatics, 8 Acad. G. Bonchev St., 1113, Sofia, Bulgaria.
Georgi Nadjakov Institute of Solid State Physics, Tsarigradsko Chaussée 72, 1784, Sofia, Bulgaria.
Sci Rep. 2025 Apr 3;15(1):11398. doi: 10.1038/s41598-025-96104-5.
Conducting a thorough theoretical study of the magnetic properties of the spin-one Ni(Metren)Cl complex, the present paper unveils the most probable quantum effect underlying the seemingly unusual magnetic behavior of Nickel based complexes exhibiting trigonal (bi-)pyramidal coordination geometry. The study unequivocally shows that the constrained orbital motion of the valence electrons is a primordial quantum effect underlying the rise of a fine structure in the energy spectrum of these molecule magnets and consequently shapes their magnetic behavior. Furthermore, it reveals the ostensible nature of the huge zero-field splitting and points out to the most probable reason to the emergence of such a notion. Accordingly, the probed experimental magnetic properties of the studied complex reported in the literature are reproduced only after the implementation of phase constraints. The conventional approach accounting for the valence electrons as unconstrained does not fit to the experimental findings. The devised method can be applied to study the magnetic properties of all molecule magnets based on metal ions with highly filled valence subshell, including the polynuclear ones.
通过对自旋为1的Ni(Metren)Cl配合物的磁性进行全面的理论研究,本文揭示了具有三角(双)锥配位几何结构的镍基配合物看似异常的磁行为背后最可能的量子效应。该研究明确表明,价电子的受限轨道运动是这些分子磁体能谱中精细结构出现的一个基本量子效应,从而塑造了它们的磁行为。此外,它揭示了巨大零场分裂的表面性质,并指出了这一概念出现的最可能原因。因此,只有在实施相位约束后,才能重现文献中报道的所研究配合物的探测实验磁性质。将价电子视为不受约束的传统方法与实验结果不符。所设计的方法可用于研究所有基于具有高填充价子壳层的金属离子的分子磁体的磁性,包括多核分子磁体。