Suppr超能文献

贡德尔大学综合专科医院血流感染的细菌病因及抗菌药物耐药性:一项横断面研究

Bacterial etiology and antimicrobial resistance in bloodstream infections at the University of Gondar Comprehensive Specialized Hospital: a cross-sectional study.

作者信息

Deress Teshiwal, Belay Gizeaddis, Ayenew Getahun, Ferede Worku, Worku Minichil, Feleke Tigist, Belay Solomon, Mulu Meseret, Adimasu Taddese Asefa, Eshetu Tegegne, Tamir Mebratu, Getie Michael

机构信息

Department of Quality Assurance and Laboratory Management, School of Biomedical and Laboratory Science, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.

Department of Medical Microbiology, Amhara National Regional State Public Health Institute, Bahir Dar, Ethiopia.

出版信息

Front Microbiol. 2025 Mar 13;16:1518051. doi: 10.3389/fmicb.2025.1518051. eCollection 2025.

Abstract

BACKGROUND

Bacterial bloodstream infections are a major global health concern, particularly in resource-limited settings including Ethiopia. There is a lack of updated and comprehensive data that integrates microbiological data and clinical findings. Therefore, this study aimed to characterize bacterial profiles, antimicrobial susceptibility, and associated factors in patients suspected of bloodstream infections at the University of Gondar Comprehensive Specialized Hospital.

METHODS

A cross-sectional study analyzed electronic records from January 2019 to December 2021. Sociodemographic, clinical, and blood culture data were analyzed. Descriptive statistics and binary logistic regression were employed to identify factors associated with bloodstream infections. Descriptive statistics such as frequency and percentage were computed. Furthermore, a binary and multivariable logistic regression model was fitted to determine the relationship between BSI and associated factors. Variables with -values of <0.05 from the multivariable logistic regression were used to show the presence of statistically significant associations.

RESULTS

A total of 4,727 patients' records were included in the study. Among these, 14.8% (701/4,727) were bacterial bloodstream infections, with Gram-negative bacteria accounting for 63.5% (445/701) of cases. The most common bacteria were (29.0%), (23.5%), and (8.4%). The study revealed a high resistance level to several antibiotics, with approximately 60.9% of the isolates demonstrating multidrug resistance. , , and exhibited high levels of multidrug resistance. The study identified emergency OPD [AOR = 3.2; (95% CI: 1.50-6.74)], oncology ward [AOR = 3.0; (95% CI: 1.21-7.17)], and surgical ward [AOR = 3.3; (95% CI: 1.27-8.43)] as factors associated with increased susceptibility to bloodstream infections.

CONCLUSION

The overall prevalence of bacterial isolates was high with concerning levels of multi-drug resistance. The study identified significant associations between bloodstream infections with age groups and presentation in specific clinical settings, such as the emergency OPD, oncology ward, and surgical ward. Strict regulation of antibiotic stewardship and the implementation of effective infection control programs should be enforced.

摘要

背景

细菌血流感染是全球主要的健康问题,在包括埃塞俄比亚在内的资源有限地区尤为突出。缺乏整合微生物学数据和临床发现的最新综合数据。因此,本研究旨在描述贡德尔大学综合专科医院疑似血流感染患者的细菌谱、抗菌药物敏感性及相关因素。

方法

一项横断面研究分析了2019年1月至2021年12月的电子记录。对社会人口统计学、临床和血培养数据进行了分析。采用描述性统计和二元逻辑回归来确定与血流感染相关的因素。计算了频率和百分比等描述性统计量。此外,拟合了二元和多变量逻辑回归模型以确定血流感染与相关因素之间的关系。多变量逻辑回归中P值<0.05的变量用于显示存在统计学显著关联。

结果

本研究共纳入4727例患者的记录。其中,14.8%(701/4727)为细菌血流感染,革兰氏阴性菌占病例的63.5%(445/701)。最常见的细菌是[具体细菌名称1](29.0%)、[具体细菌名称2](23.5%)和[具体细菌名称3](8.4%)。该研究显示对几种抗生素的耐药水平较高,约60.9%的分离株表现出多重耐药性。[具体细菌名称1]、[具体细菌名称2]和[具体细菌名称3]表现出高水平的多重耐药性。该研究确定急诊门诊[调整后比值比(AOR)=3.2;(95%置信区间:1.50 - 6.74)]、肿瘤科病房[调整后比值比(AOR)=3.0;(95%置信区间:1.21 - 7.17)]和外科病房[调整后比值比(AOR)=3.3;(95%置信区间:1.27 - 8.43)]是与血流感染易感性增加相关的因素。

结论

细菌分离株的总体患病率较高,多重耐药水平令人担忧。该研究确定了血流感染与年龄组以及在特定临床环境(如急诊门诊、肿瘤科病房和外科病房)中的表现之间存在显著关联。应严格规范抗生素管理并实施有效的感染控制计划。

相似文献

5
Bacterial profile and antimicrobial susceptibility patterns in cancer patients.癌症患者的细菌谱及抗菌药物敏感性模式
PLoS One. 2022 Apr 15;17(4):e0266919. doi: 10.1371/journal.pone.0266919. eCollection 2022.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验