Han Shunshun, Zhao Xiyu, Yu Chunlin, Cui Can, Zhang Yao, Zhu Qing, Qiu Mohan, Yang Chaowu, Yin Huadong
College of Animal Science and Technology, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, Sichuan, China.
Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
J Cachexia Sarcopenia Muscle. 2025 Apr;16(2):e13779. doi: 10.1002/jcsm.13779.
Programmed cell death plays a critical role in skeletal muscle atrophy. Ferroptosis, an iron-dependent form of programmed cell death driven by lipid peroxidation, has been implicated in various diseases, but its role in skeletal muscle atrophy remains unclear.
Ferroptosis in skeletal muscle atrophy was investigated using two models: dexamethasone (Dex)-induced atrophy (n = 6 independent cell cultures per group) and simulated microgravity (n = 6 mice per group). Conditional Nestin knockout (KO) mice were generated using CRISPR/Cas9 (n = 6-8 mice per group), with wild-type (WT) controls (n = 6-8). Phenotypic analyses included histopathology (HE staining), functional assessments (muscle strength, weight analysis, treadmill), and dystrophy evaluation (dystrophin staining). Molecular analyses involved flow cytometry, ELISA, transmission electron microscopy, PI staining, and IP/MS to delineate Nestin-regulated ferroptosis pathways in skeletal muscle atrophy.
Ferroptosis was significantly activated in both atrophy models, with a 2.5-fold increase in lipid peroxidation (p < 0.01), a 2-fold accumulation of Fe (p < 0.01) and a 50% reduction in Nestin expression (p < 0.001). Nestin KO mice exhibited exacerbated muscle atrophy, showing a 40% decrease in muscle weight (p < 0.01) and a 30% reduction in muscle strength (p < 0.05) compared to WT mice. Nestin overexpression mitigated Dex-induced ferroptosis, reducing lipid peroxidation by 40%, decreasing Fe accumulation by 50% (p < 0.01), and improving muscle function by 30% (p < 0.05). Mechanistically, Nestin interacted with MAP 1LC3B (LC3B) to catalyse LC3B polyubiquitination at lysine-51, reducing LC3B availability for autophagy and inhibiting autophagy flux by 60% (p < 0.01), leading to a 50% reduction in ferroptosis (p < 0.001).
Our study identifies Nestin as a critical regulator of ferroptosis-autophagy crosstalk in skeletal muscle atrophy. Targeting Nestin-LC3B ubiquitination may offer novel therapeutic strategies for preventing muscle wasting in diseases such as cachexia and sarcopenia.
程序性细胞死亡在骨骼肌萎缩中起关键作用。铁死亡是一种由脂质过氧化驱动的铁依赖性程序性细胞死亡形式,已被认为与多种疾病有关,但其在骨骼肌萎缩中的作用仍不清楚。
使用两种模型研究骨骼肌萎缩中的铁死亡:地塞米松(Dex)诱导的萎缩(每组6个独立细胞培养物)和模拟微重力(每组6只小鼠)。使用CRISPR/Cas9技术构建条件性巢蛋白敲除(KO)小鼠(每组6 - 8只小鼠),并设置野生型(WT)对照(每组6 - 8只)。表型分析包括组织病理学(HE染色)、功能评估(肌肉力量、体重分析、跑步机测试)和营养不良评估(抗肌萎缩蛋白染色)。分子分析涉及流式细胞术、酶联免疫吸附测定、透射电子显微镜、PI染色以及免疫沉淀/质谱分析,以描绘巢蛋白在骨骼肌萎缩中调节铁死亡的途径。
在两种萎缩模型中,铁死亡均被显著激活,脂质过氧化增加2.5倍(p < 0.01),铁蓄积增加2倍(p < 0.01),巢蛋白表达降低50%(p < 0.001)。与野生型小鼠相比,巢蛋白敲除小鼠表现出更严重的肌肉萎缩,肌肉重量降低40%(p < 0.01),肌肉力量降低30%(p < 0.05)。巢蛋白过表达减轻了地塞米松诱导的铁死亡,脂质过氧化降低40%,铁蓄积减少50%(p < 0.01),肌肉功能改善30%(p < 0.05)。机制上,巢蛋白与微管相关蛋白1轻链3B(LC3B)相互作用,催化LC3B在赖氨酸 - 51处的多聚泛素化,减少自噬中可利用的LC3B,使自噬通量降低60%(p < 0.01),导致铁死亡减少50%(p < 0.001)。
我们的研究确定巢蛋白是骨骼肌萎缩中铁死亡 - 自噬串扰的关键调节因子。靶向巢蛋白 - LC3B泛素化可能为预防恶病质和肌肉减少症等疾病中的肌肉萎缩提供新的治疗策略。