Zheng Jiaqian, Ren Yipeng, Ke Junhua, Zhu Guanglin, Wang Zhen, Shi Xuetao, Wang Yingjun
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China.
ACS Nano. 2025 Apr 15;19(14):13952-13967. doi: 10.1021/acsnano.4c17989. Epub 2025 Apr 4.
Aging-related bone degeneration and impaired healing capacity remain significant challenges in regenerative medicine, necessitating innovative, efficient, and targeted strategies to restore bone health. Here, we engineered extracellular vesicles (EVs) derived from the serum of pretreated juvenile mice, with the goals of reversing aging, enhancing osteogenic potential, and increasing bioavailability to rejuvenate the aging bone environment. First, we established bone healing models representing different phases of healing to identify the EV type with the highest potential for improving the bone microenvironment in older individuals. Second, we employed DSS6 for bone targeting to enhance the biological effects of the selected EVs in vivo. The engineered EVs effectively targeted bone repair sites and promoted fracture healing more effectively than unmodified EVs in older mice. RNA sequencing revealed that the translocase of outer mitochondrial membrane 7 (Tomm7) is crucial for the underlying mechanism. Silencing Tomm7 significantly diminished the positive regulatory effects of the EVs. Specifically, the engineered EVs may enhance mitochondrial function in aging cells by activating the Tomm7-mediated Pink1/Parkin mitophagy pathway, promoting stemness recovery in aging bone marrow stromal cells (BMSCs) and reversing the adverse conditions of the aging bone microenvironment. Overall, the developed engineered EVs derived from serum from juvenile mice offer an alternative approach for treating aging bones. The identified underlying biological mechanisms provide a valuable reference for precision treatment of aging bones in the future.
衰老相关的骨退化和愈合能力受损仍然是再生医学中的重大挑战,因此需要创新、高效且有针对性的策略来恢复骨骼健康。在此,我们构建了源自预处理幼年小鼠血清的细胞外囊泡(EVs),旨在逆转衰老、增强成骨潜能并提高生物利用度,以使衰老的骨环境恢复活力。首先,我们建立了代表愈合不同阶段的骨愈合模型,以确定对改善老年个体骨微环境具有最大潜力的EV类型。其次,我们使用DSS6进行骨靶向,以增强所选EVs在体内的生物学效应。在老年小鼠中,工程化的EVs比未修饰的EVs更有效地靶向骨修复部位并促进骨折愈合。RNA测序显示,线粒体外膜转位酶7(Tomm7)对其潜在机制至关重要。沉默Tomm7可显著降低EVs的正向调节作用。具体而言,工程化的EVs可能通过激活Tomm7介导的Pink1/Parkin线粒体自噬途径来增强衰老细胞中的线粒体功能,促进衰老骨髓间充质干细胞(BMSCs)的干性恢复,并逆转衰老骨微环境的不利状况。总体而言,所开发的源自幼年小鼠血清的工程化EVs为治疗衰老骨骼提供了一种替代方法。所确定的潜在生物学机制为未来衰老骨骼的精准治疗提供了有价值的参考。