Bullock L P, Watson G, Paigen K
Mol Cell Endocrinol. 1985 Jul;41(2-3):179-85. doi: 10.1016/0303-7207(85)90021-8.
Administration of androgen to mice induces kidney beta-glucuronidase. Measuring beta-glucuronidase activity, rate of beta-glucuronidase synthesis, beta-glucuronidase mRNA activity and beta-glucuronidase mRNA concentration, the time course of induction was compared using a strong androgen, dihydrotestosterone (DHT), and a weakly androgenic progestin, medroxyprogesterone acetate (MPA). Using MPA resulted in a longer lag, a 3-4-fold slower rate of induction as defined by the forward rate constant, ka, a lower final extent of induction, and a slightly lower turnover constant, kb. Differences in kinetics of induction were consistent for all 4 measured parameters, and mimicked previously described genetic differences in these rate constants. The coordinate induction of beta-glucuronidase protein and beta-glucuronidase mRNA indicates that the response to androgen is regulated at a pre-translational level. That substitution of MPA for DHT decreases ka, rather than increasing kb, suggests that induction of beta-glucuronidase follows an increased rate of mRNA synthesis rather than a decreased rate of mRNA turnover. Finally, the results are consistent with a model in which the kinetic constants for beta-glucuronidase induction are dependent on the concentration of receptor molecules in the active conformational state.