Latham Edward, Bowen Alice M, Cox Nicholas, Chilton Nicholas F
Research School of Chemsitry, Sullivans Creek Rd, Acton, ACT 2601, Australia.
Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
Inorg Chem. 2025 Apr 21;64(15):7490-7498. doi: 10.1021/acs.inorgchem.5c00298. Epub 2025 Apr 4.
The development of molecular quantum bits (qubits) for quantum information processing is a lofty goal. While many contemporary works investigate their potential for error correction, fault-tolerance, memories, etc., there is still a lack of experimental examples of molecular multiqubit sequences. Herein, we perform a theoretical investigation of spin Hamiltonian parameter space to identify molecules that could be used to implement a 4-level superdense coding algorithm that has the least stringent requirements for experimental implementation. To do so, we analyze the zero-field splitting (ZFS) Hamiltonian of an = 3/2 spin system to determine its effectiveness as a molecular qudit capable of performing the superdense coding circuit with X-band pulsed electron paramagnetic resonance (EPR), accounting for realistic constraints imposed by EPR spectrometers. For an = 3/2 system, the optimal ZFS parameters are || ≈ 0.115 cm and || ≈ -0.0383 cm (|/| ≈ 0.33 approaching the rhombic limit of 1/3), with a field around 160 mT. Our findings highlight the need to maximize the rhombicity of the spin Hamiltonian for four-level molecular qudits.
开发用于量子信息处理的分子量子比特(qubit)是一个崇高的目标。虽然许多当代研究探讨了它们在纠错、容错、存储等方面的潜力,但分子多量子比特序列的实验实例仍然匮乏。在此,我们对自旋哈密顿量参数空间进行了理论研究,以确定可用于实现对实验实施要求最低的4能级超密集编码算法的分子。为此,我们分析了自旋为3/2的系统的零场分裂(ZFS)哈密顿量,以确定其作为能够通过X波段脉冲电子顺磁共振(EPR)执行超密集编码电路的分子量子位的有效性,并考虑了EPR光谱仪施加的实际限制。对于自旋为3/2的系统,最佳ZFS参数为||≈0.115cm和||≈ -0.0383cm(|/|≈0.33,接近菱形极限1/3),磁场约为160mT。我们的研究结果强调了对于四能级分子量子位,需要使自旋哈密顿量的菱形度最大化。