Suppr超能文献

用于量子电路的分子量子比特的逆设计

Inverse Design of Molecular Qudits for Quantum Circuitry.

作者信息

Latham Edward, Bowen Alice M, Cox Nicholas, Chilton Nicholas F

机构信息

Research School of Chemsitry, Sullivans Creek Rd, Acton, ACT 2601, Australia.

Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.

出版信息

Inorg Chem. 2025 Apr 21;64(15):7490-7498. doi: 10.1021/acs.inorgchem.5c00298. Epub 2025 Apr 4.

Abstract

The development of molecular quantum bits (qubits) for quantum information processing is a lofty goal. While many contemporary works investigate their potential for error correction, fault-tolerance, memories, etc., there is still a lack of experimental examples of molecular multiqubit sequences. Herein, we perform a theoretical investigation of spin Hamiltonian parameter space to identify molecules that could be used to implement a 4-level superdense coding algorithm that has the least stringent requirements for experimental implementation. To do so, we analyze the zero-field splitting (ZFS) Hamiltonian of an = 3/2 spin system to determine its effectiveness as a molecular qudit capable of performing the superdense coding circuit with X-band pulsed electron paramagnetic resonance (EPR), accounting for realistic constraints imposed by EPR spectrometers. For an = 3/2 system, the optimal ZFS parameters are || ≈ 0.115 cm and || ≈ -0.0383 cm (|/| ≈ 0.33 approaching the rhombic limit of 1/3), with a field around 160 mT. Our findings highlight the need to maximize the rhombicity of the spin Hamiltonian for four-level molecular qudits.

摘要

开发用于量子信息处理的分子量子比特(qubit)是一个崇高的目标。虽然许多当代研究探讨了它们在纠错、容错、存储等方面的潜力,但分子多量子比特序列的实验实例仍然匮乏。在此,我们对自旋哈密顿量参数空间进行了理论研究,以确定可用于实现对实验实施要求最低的4能级超密集编码算法的分子。为此,我们分析了自旋为3/2的系统的零场分裂(ZFS)哈密顿量,以确定其作为能够通过X波段脉冲电子顺磁共振(EPR)执行超密集编码电路的分子量子位的有效性,并考虑了EPR光谱仪施加的实际限制。对于自旋为3/2的系统,最佳ZFS参数为||≈0.115cm和||≈ -0.0383cm(|/|≈0.33,接近菱形极限1/3),磁场约为160mT。我们的研究结果强调了对于四能级分子量子位,需要使自旋哈密顿量的菱形度最大化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e30a/12015810/0294d6e78c2a/ic5c00298_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验