Xie Yu-Qing, Fussenegger Martin
Department of Biosystems Science and Engineering, Eidgenössiche Technische Hochschule Zurich, Schanzenstrasse 48, CH-4056, Basel, Switzerland.
Department of Biosystems Science and Engineering, Eidgenössiche Technische Hochschule Zurich, Schanzenstrasse 48, CH-4056, Basel, Switzerland; Faculty of Science, University of Basel, Schanzenstrasse 48, CH-4056, Basel, Switzerland.
Metab Eng. 2025 Sep;91:77-90. doi: 10.1016/j.ymben.2025.03.019. Epub 2025 Apr 2.
The recent clinical success of genetically modified T-cell therapies underscores the urgent need to accelerate fundamental studies and functional screening methods in T lymphocytes. However, a facile and cost-effective method for efficient genetic engineering of T-cells remains elusive. Current approaches often rely on viral transduction, which is labor-intensive and requires stringent biosafety measures. Plasmid-based electroporation presents an affordable alternative, but remains underexplored in T-cells. Moreover, the availability of prototypical T-cell lines is limited. Here, we address these challenges by focusing on two immortalized murine T-cell lines, HT-2 and CTLL-2, which recapitulate key characteristics of primary T-cells, including cytotoxicity and cytokine-dependent proliferation. Alongside the widely used Jurkat T-cell line, HT-2 and CTLL-2 were successfully transfected with single or multiple genes with high efficiencies by means of optimized electroporation in a cuvette-based system. Notably, optimization of plasmid constructs enabled the delivery of large gene-of-interest (GOI) cargos of up to 6.5 kilobase pairs, as well as stable integration of a GOI into the genome via the Sleeping Beauty transposon system. We also developed advanced methodologies for CRISPR/Cas9-mediated gene editing in immortalized T lymphocytes, achieving knockout efficiencies of up to 97 % and homology-directed repair (HDR)-based targeted knock-in efficiencies of up to 70 %. We believe this optimized plasmid-based electroporation approach will contribute to advances in basic research on lymphocyte biology, as well as providing a practical, cost-effective tool for preclinical studies of T-cell therapies.
基因改造的T细胞疗法近期在临床上取得的成功凸显了加速T淋巴细胞基础研究和功能筛选方法的迫切需求。然而,一种简便且经济高效的T细胞高效基因工程方法仍然难以捉摸。目前的方法通常依赖病毒转导,这既耗费人力,又需要严格的生物安全措施。基于质粒的电穿孔提供了一种经济实惠的替代方法,但在T细胞中的应用仍未得到充分探索。此外,典型T细胞系的可用性有限。在此,我们通过聚焦两种永生化小鼠T细胞系HT-2和CTLL-2来应对这些挑战,这两种细胞系概括了原代T细胞的关键特征,包括细胞毒性和细胞因子依赖性增殖。除了广泛使用的Jurkat T细胞系外,HT-2和CTLL-2通过基于比色杯系统的优化电穿孔成功高效转染了单个或多个基因。值得注意的是,质粒构建体的优化使得能够递送长达6.5千碱基对的大型感兴趣基因(GOI)货物,以及通过睡美人转座子系统将GOI稳定整合到基因组中。我们还开发了用于永生化T淋巴细胞中CRISPR/Cas9介导的基因编辑的先进方法,实现了高达97%的敲除效率和高达70%的基于同源定向修复(HDR)的靶向敲入效率。我们相信这种优化的基于质粒的电穿孔方法将有助于淋巴细胞生物学基础研究的进展,并为T细胞疗法的临床前研究提供一种实用、经济高效的工具。