Vergnes Jean-Baptiste, Roger Benoit, Iggo Richard, Wodrich Harald
Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR5234, University of Bordeaux, Bordeaux, France.
INSERM U1312, University of Bordeaux, Bordeaux, France.
J Virol. 2025 Jun 17;99(6):e0226524. doi: 10.1128/jvi.02265-24. Epub 2025 May 21.
The size and complexity of large viral genomes limit the technical possibilities for genome manipulations in fundamental research and medical or technological applications. State-of-the-art recombineering in bacteria has partially overcome this limit but remains a time-consuming and complex procedure requiring specialist expertise. Here, we describe a simplified and highly efficient protocol for unlimited and traceless manipulation applicable to large viral genomes from DNA viruses using a combination of CRISPR/Cas9 cleavage and DNA assembly. We successfully used the protocol to manipulate adenovirus genomes, showing that genome rescue from viruses, insertions, deletions, and mutagenesis can be performed in a simple overnight procedure in a standard laboratory setting without the need for advanced knowledge of molecular biology. Finally, we use our approach to demonstrate the , multi-step construction of an adenovirus vector suitable for delivering very large transgenes for gene editing.IMPORTANCEThe 36 kb size of the adenoviral genome has long been a deterrent to the construction of adenoviral mutants by scientists wishing to study the virus itself or to construct adenoviral vectors for cell biology and gene therapy. Most previous techniques, such as recombineering and yeast gap repair, impress more by their elegance than by their ease. In this paper, we use Cas9 ribonucleoprotein particles (RNPs) to target cleavage to specific sites in an adenoviral plasmid, then repair the break by Gibson assembly. Gibson assembly with synthetic DNA fragments has transformed basic cloning. Combining it with Cas9 RNPs, which act like highly specific restriction enzymes, makes adenoviral mutagenesis as easy as traditional plasmid cloning. We have used the approach to modify multiple sites in the adenoviral genome, but it could be applied to any large DNA virus for which the genome can be cloned in a plasmid.
大型病毒基因组的大小和复杂性限制了基础研究以及医学或技术应用中基因组操作的技术可能性。细菌中最先进的重组工程技术部分克服了这一限制,但仍然是一个耗时且复杂的过程,需要专业知识。在此,我们描述了一种简化且高效的方案,该方案适用于DNA病毒的大型病毒基因组,通过结合CRISPR/Cas9切割和DNA组装实现无限且无痕的操作。我们成功地使用该方案操作腺病毒基因组,表明在标准实验室环境中,无需分子生物学的先进知识,仅需一个简单的过夜操作就能从病毒中进行基因组拯救、插入、缺失和诱变。最后,我们使用我们的方法展示了一种腺病毒载体的多步骤构建,该载体适用于递送用于基因编辑的非常大的转基因。重要性腺病毒基因组36 kb的大小长期以来一直阻碍着希望研究病毒本身或构建用于细胞生物学和基因治疗的腺病毒载体的科学家构建腺病毒突变体。以前的大多数技术,如重组工程和酵母缺口修复,更多地因其精巧而非简便而令人印象深刻。在本文中,我们使用Cas9核糖核蛋白颗粒(RNP)将切割靶向腺病毒质粒中的特定位点,然后通过吉布森组装修复断裂。用合成DNA片段进行吉布森组装已经改变了基础克隆。将其与像高度特异性限制酶一样起作用的Cas9 RNP相结合,使腺病毒诱变像传统质粒克隆一样容易。我们已经使用该方法在腺病毒基因组中修饰了多个位点,但它可应用于任何基因组可克隆到质粒中的大型DNA病毒。