Díaz María Alejandra, Mohamadi Parham Haji Ali, De Bock Sander, Langlois Kevin, De Winter Joris, Verstraten Tom, De Pauw Kevin
Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, 1050, Belgium.
Brussels Human Robotics Research Center, Vrije Universiteit Brussel, Brussels, 1050, Belgium.
Sci Rep. 2025 Apr 4;15(1):11627. doi: 10.1038/s41598-025-92611-7.
There is increasing interest in using assistive robotic devices to support motor re-learning and recovery in individuals with neurological impairments. These robots aim to enhance overall motor control by providing adaptive assistance. However, using muscle synergies in designing control strategies for rehabilitation devices remains an emerging area of research. This study proposes a novel synergy-based objective function to assess how changes in robotic assistance levels affect muscle synergies in a 2D reaching task in the horizontal plane. Healthy participants performed the task in a transparent mode and with three levels of assistance while holding a weight. EMG signals from seven muscles were decomposed into muscle synergies across all conditions. First, we defined the three reference synergies as baseline knowledge of the synergies required to execute the task and their modulation, resulting in three main muscle recruitment strategies across ten participants. We then introduce three metrics to assess variations in motor coordination relative to the reference synergies. These metrics assessed how closely participants' muscle activation patterns matched the reference synergies, capturing variations in the shape, timing, and overall similarity of the muscle activation profiles. Finally, by combining the metrics, we present an objective function that assesses participants' motor coordination when performing the task with the added weight. The results highlight the importance of personalized assistance, as not all individuals could closely match the reference synergies with the same level of assistance. Additionally, the objective function demonstrated statistically significant differences in performance across assistance levels. Although this is a preliminary study, it presents promising results as a first step towards implementing human-in-the loop optimization in robotic-assisted rehabilitation.
使用辅助机器人设备来支持神经功能受损个体的运动再学习和恢复,正受到越来越多的关注。这些机器人旨在通过提供适应性辅助来增强整体运动控制。然而,在为康复设备设计控制策略时运用肌肉协同作用仍是一个新兴的研究领域。本研究提出了一种基于协同作用的新型目标函数,以评估机器人辅助水平的变化如何影响水平面二维伸手任务中的肌肉协同作用。健康参与者在手持重物的情况下,以透明模式并在三种辅助水平下执行该任务。对来自七块肌肉的肌电图信号在所有条件下进行分解,得到肌肉协同作用。首先,我们将三种参考协同作用定义为执行任务所需的协同作用及其调制的基线知识,从而得出十名参与者的三种主要肌肉募集策略。然后,我们引入三个指标来评估相对于参考协同作用的运动协调性变化。这些指标评估了参与者的肌肉激活模式与参考协同作用的匹配程度,捕捉了肌肉激活曲线在形状、时间和整体相似性方面的变化。最后,通过结合这些指标,我们提出了一个目标函数,用于评估参与者在手持重物执行任务时的运动协调性。结果凸显了个性化辅助的重要性,因为并非所有个体在相同辅助水平下都能紧密匹配参考协同作用。此外,目标函数显示出不同辅助水平下在性能上存在统计学显著差异。尽管这是一项初步研究,但作为迈向在机器人辅助康复中实施人在回路优化的第一步,它呈现出了有前景的结果。