Suppr超能文献

基于双参数磁共振成像的影像组学用于预测PI-RADS 3类病变中具有临床意义的前列腺癌。

Biparametric MRI-based radiomics for prediction of clinically significant prostate cancer of PI-RADS category 3 lesions.

作者信息

Lu Feng, Zhao Yanjun, Wang Zhongjuan, Feng Ninghan

机构信息

Department of Radiology, Jiangnan University Medical Center, Wuxi, China.

Wuxi School of Medicine, Jiangnan University, Wuxi, China.

出版信息

BMC Cancer. 2025 Apr 5;25(1):615. doi: 10.1186/s12885-025-14022-1.

Abstract

PURPOSE

We aimed to investigate the diagnostic performance of biparametric MRI (bpMRI)-based radiomics in differentiating clinically significant prostate cancer (csPCa) among lesions categorized as Prostate Imaging Reporting and Data System (PI-RADS) score 3.

METHOD

Between September 2020 and October 2023, a total of 233 patients with PI-RADS category 3 lesions were identified, which were divided into training cohort (n = 160) and validation cohort (n = 73). Radiomics features were extracted from T2-weighted imaging (T2) and diffusion-weighted imaging (DWI) for csPCa prediction. The least absolute shrinkage and selection operator (LASSO) regression algorithm was used to select the most useful radiomics features. Diagnostic performance was compared using the area under the receiver operating characteristic (ROC) curve (AUC).

RESULTS

34 robust radiomics features (incorporating 12 features from T2 and 22 features from DWI) were selected to construct the final radiomics signature. In the training group, the AUCs for prostate-specific antigen density (PSAD), radiomics, and combination were 0.658 (95% CI 0.550-0.766), 0.858 (95% CI 0.779-0.936), and 0.887 (95% CI 0.814-0.959), respectively, in the validation group were 0.690 (95% CI 0.524-0.855), 0.810 (95% CI 0.682-0.937), and 0.856 (95% CI 0.750-0.962). The combination model integrating radiomics and PSAD showed a significant improvement in diagnostic performance as compared to using these two parameters alone either in the training group (P < 0.001 and P = 0.024) or in the validation group (P = 0.024 and P = 0.048).

CONCLUSION

BpMRI-based radiomics had high diagnostic performance in predicting csPCa among PI-RADS 3 lesions, and combining it with PSAD could further improve the overall accuracy.

摘要

目的

我们旨在研究基于双参数磁共振成像(bpMRI)的影像组学在鉴别前列腺影像报告和数据系统(PI-RADS)评分为3类病变中的临床显著前列腺癌(csPCa)方面的诊断性能。

方法

在2020年9月至2023年10月期间,共识别出233例PI-RADS 3类病变患者,将其分为训练队列(n = 160)和验证队列(n = 73)。从T2加权成像(T2)和扩散加权成像(DWI)中提取影像组学特征用于csPCa预测。采用最小绝对收缩和选择算子(LASSO)回归算法选择最有用的影像组学特征。使用受试者操作特征(ROC)曲线下面积(AUC)比较诊断性能。

结果

选择了34个稳健的影像组学特征(包括来自T2的12个特征和来自DWI的22个特征)来构建最终的影像组学特征模型。在训练组中,前列腺特异性抗原密度(PSAD)、影像组学及两者联合的AUC分别为0.658(95%CI 0.550 - 0.766)、0.858(95%CI 0.779 - 0.936)和0.887(95%CI 0.814 - 0.959);在验证组中分别为0.690(95%CI 0.524 - 0.855)、0.810(95%CI 0.682 - 0.937)和0.856(95%CI 0.750 - 0.962)。在训练组(P < 0.001和P = 0.024)或验证组(P = 0.024和P = 0.048)中,将影像组学和PSAD整合的联合模型与单独使用这两个参数相比,在诊断性能上有显著提高。

结论

基于bpMRI的影像组学在预测PI-RADS 3类病变中的csPCa方面具有较高的诊断性能,将其与PSAD相结合可进一步提高总体准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4a8/11972529/745ded0cadc9/12885_2025_14022_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验