Suppr超能文献

利用 3T 前列腺 MRI 中 T2w 衍生的放射组学特征图谱检测 PI-RADS 3 病变中的临床显著前列腺癌。

Detecting Clinically Significant Prostate Cancer in PI-RADS 3 Lesions Using T2w-Derived Radiomics Feature Maps in 3T Prostate MRI.

机构信息

Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiology, Hindenburgdamm 30, 12203 Berlin, Germany.

Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Urology, Hindenburgdamm 30, 12203 Berlin, Germany.

出版信息

Curr Oncol. 2024 Nov 1;31(11):6814-6828. doi: 10.3390/curroncol31110503.

Abstract

Prostate Imaging Reporting and Data System version 2.1 (PI-RADS) category 3 lesions are a challenge in the clinical workflow. A better detection of the infrequently occurring clinically significant prostate cancer (csPCa) in PI-RADS 3 lesions is an important objective. The purpose of this study was to evaluate if feature maps calculated from T2-weighted (T2w) 3 Tesla (3T) MRI can help detect csPCa in PI-RADS category 3 lesions. In-house biparametric 3T prostate MRI examinations acquired between January 2019 and June 2023 because of elevated prostate-specific antigen (PSA) levels were retrospectively screened. Inclusion criteria were a PI-RADS 3 lesion and available results of an ultrasound-guided targeted and systematic biopsy. Exclusion criteria were a simultaneous PI-RADS category 4 or 5 lesion and hip replacement. Target lesions with the International Society of Urological Pathology (ISUP) grade group 1 were rated clinically insignificant PCa (ciPCa) and ≥2 csPCa. This resulted in 52 patients being included in the final analysis, of whom 11 (21.1%), 8 (15.4%), and 33 (63.5%) patients had csPCa, ciPCa, and no PCa, respectively, with the latter two groups being combined as non-csPCa. Eight of the csPCas were located in the peripheral zone (PZ) and three in the transition zone (TZ). In the non-csPCa group, 29 were located in the PZ and 12 in the TZ. Target lesions were marked with volumes of interest (VOIs) on axial T2w images. Axial T2w images were then converted to 93 feature maps. VOIs were copied into the maps, and feature quantity was retrieved directly. Features were tested for significant differences with the Mann-Whitney U-test. Univariate models for single feature performance and bivariate models implementing PSA density (PSAD) were calculated. Ten map-derived features differed significantly between the csPCa and non-csPCa groups (AUCs: 0.70-0.84). The diagnostic performance for TZ lesions (AUC: 0.83-1.00) was superior to PZ lesions (AUC: 0.74-0.85). In the bivariate models, performance in the PZ improved with AUCs >0.90 throughout. Parametric feature maps alone and as bivariate models with PSAD can (?) noninvasively identify csPCa in PI-RADS 3 lesions and could serve as a quantitative tool reducing ambiguity in PI-RADS 3 lesions.

摘要

前列腺成像报告和数据系统第 2.1 版(PI-RADS)类别 3 病变是临床工作流程中的一个挑战。更好地检测 PI-RADS 3 病变中不常见的临床显著前列腺癌(csPCa)是一个重要目标。本研究旨在评估从 T2 加权(T2w)3 特斯拉(3T)MRI 计算出的特征图是否有助于检测 PI-RADS 类别 3 病变中的 csPCa。回顾性筛选了 2019 年 1 月至 2023 年 6 月因前列腺特异性抗原(PSA)水平升高而进行的内部双参数 3T 前列腺 MRI 检查。纳入标准为 PI-RADS 3 病变和可用的超声引导靶向和系统活检结果。排除标准为同时存在 PI-RADS 类别 4 或 5 病变和髋关节置换。国际泌尿病理学会(ISUP)分级组 1 的靶病变被评为临床无意义前列腺癌(ciPCa)和≥2 例 csPCa。这导致最终分析纳入了 52 名患者,其中 11 名(21.1%)、8 名(15.4%)和 33 名(63.5%)患者分别患有 csPCa、ciPCa 和无 PCa,后两者合并为非 csPCa。csPCa 中有 8 个位于外周区(PZ),3 个位于移行区(TZ)。在非 csPCa 组中,29 个位于 PZ,12 个位于 TZ。靶病变在轴位 T2w 图像上用感兴趣体积(VOI)标记。然后将轴位 T2w 图像转换为 93 个特征图。将 VOI 复制到地图中,直接检索特征数量。使用曼-惠特尼 U 检验测试特征的显著性差异。计算了单特征性能的单变量模型和实施 PSA 密度(PSAD)的双变量模型。10 个基于地图的特征在 csPCa 和非 csPCa 组之间差异显著(AUC:0.70-0.84)。TZ 病变的诊断性能(AUC:0.83-1.00)优于 PZ 病变(AUC:0.74-0.85)。在双变量模型中,随着 AUC 大于 0.90,PZ 病变的性能得到改善。参数特征图本身以及与 PSAD 的双变量模型可以(?)非侵入性地识别 PI-RADS 3 病变中的 csPCa,并可作为一种定量工具,减少 PI-RADS 3 病变中的模糊性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验