Suppr超能文献

揭示CeO(111)表面氧空位的非阿累尼乌斯迁移

Revealing the Non-Arrhenius Migration of Oxygen Vacancies at the CeO(111) Surface.

作者信息

Zhang Yujing, Cai Huabing, Zhu Beien, Han Zhong-Kang, Li Hui, Ganduglia-Pirovano M Verónica, Gao Yi

机构信息

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

Photon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.

出版信息

J Phys Chem Lett. 2025 Apr 17;16(15):3734-3740. doi: 10.1021/acs.jpclett.5c00444. Epub 2025 Apr 6.

Abstract

Ceria (CeO) is renowned for its exceptional oxygen storage capacity, which makes it highly valuable in various applications. Central to its functionality is the migration of oxygen vacancies (V's). While previous studies have extensively examined the distribution of V's and Ce polarons, their kinetic behaviors and interactions, especially in the presence of multiple vacancies, are not yet fully understood. In this study, we employ density functional theory (DFT), ab initio molecular dynamics (AIMD) simulations, and machine-learning methods to investigate these phenomena. Our findings reveal a nonmonotonic temperature dependence of the migration rate of V's at the CeO(111) surface. Our theoretical model further demonstrates that the migration of V's and the hopping of polarons are intricately coupled. Notably, frequent polaron hopping at high temperatures hinders V migration, indicating a non-Arrhenius mechanism. This finding is further validated through long-time molecular dynamics simulation enhanced with neural network potentials. Our results provide a microscopic understanding of the interplay between V's and Ce polarons, offering crucial insights into the complex dynamics governing oxygen vacancy migration in ceria. This knowledge paves the way for improved material design and functionality.

摘要

二氧化铈(CeO)以其卓越的储氧能力而闻名,这使其在各种应用中具有极高的价值。氧空位(V)的迁移是其功能的核心。虽然先前的研究广泛考察了V和Ce极化子的分布、它们的动力学行为及相互作用,但尤其是在存在多个空位的情况下,这些方面尚未得到充分理解。在本研究中,我们采用密度泛函理论(DFT)、从头算分子动力学(AIMD)模拟和机器学习方法来研究这些现象。我们的研究结果揭示了CeO(111)表面V迁移率的非单调温度依赖性。我们的理论模型进一步表明,V的迁移与极化子的跳跃紧密耦合。值得注意的是,高温下频繁的极化子跳跃会阻碍V迁移,这表明存在非阿仑尼乌斯机制。通过用神经网络势增强的长时间分子动力学模拟,这一发现得到了进一步验证。我们的结果提供了对V与Ce极化子之间相互作用的微观理解,为控制二氧化铈中氧空位迁移的复杂动力学提供了关键见解。这一知识为改进材料设计和功能铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b61/12010425/13b05993a4ce/jz5c00444_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验