Suppr超能文献

基于库的 LAMMPS 高维神经网络势实现。

Library-Based LAMMPS Implementation of High-Dimensional Neural Network Potentials.

机构信息

Faculty of Physics , University of Vienna , Boltzmanngasse 5 , 1090 Vienna , Austria.

Universität Göttingen , Institut für Physikalische Chemie, Theoretische Chemie , Tammannstraße 6 , 37077 Göttingen , Germany.

出版信息

J Chem Theory Comput. 2019 Mar 12;15(3):1827-1840. doi: 10.1021/acs.jctc.8b00770. Epub 2019 Feb 7.

Abstract

Neural networks and other machine learning approaches have been successfully used to accurately represent atomic interaction potentials derived from computationally demanding electronic structure calculations. Due to their low computational cost, such representations open the possibility for large scale reactive molecular dynamics simulations of processes with bonding situations that cannot be described accurately with traditional empirical force fields. Here, we present a library of functions developed for the implementation of neural network potentials. Written in C++, this library incorporates several strategies resulting in a very high efficiency of neural network potential-energy and force evaluations. Based on this library, we have developed an implementation of the neural network potential within the molecular dynamics package LAMMPS and demonstrate its performance using liquid water as a test system.

摘要

神经网络和其他机器学习方法已成功用于准确表示从计算要求高的电子结构计算中得出的原子相互作用势能。由于其计算成本低,因此这些表示形式为使用传统经验力场无法准确描述的键合情况的大规模反应分子动力学模拟开辟了可能性。在这里,我们介绍了为实现神经网络势而开发的函数库。该库用 C++编写,结合了几种策略,从而使神经网络势的能量和力评估非常高效。在此库的基础上,我们在分子动力学包 LAMMPS 中开发了神经网络势的实现,并使用液态水作为测试系统来演示其性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验