Yu Shiqiang, Fu Yuting, Qu Jinrui, Zhang Kai, Zhu Weiyun, Mao Shengyong, Liu Junhua
Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf064.
With extreme nutritional substrate deficiency, the adaptive responses of the gastrointestinal microbiota and host metabolism are largely unknown. Here, we successfully established a microbial substrate deficiency model in the rumen without solid diet introduction in neonatal lambs. In the absence of solid diet, we observed a reduction in the Simpson Index of rumen bacteria, along with a marked decline in the abundance of keystone microorganisms such as Prevotella, Selenomonas, Megasphaera, and Succiniclasticum, indicating a simplified microbial interaction network. Additionally, more urea and NH3-N production facilitated microbial efficient nitrogen utilization to prioritize ammonia as a nitrogen source for survival, reallocating energy to overcome nutritional limitations and sustain their viability. In addition, enriched archaea (Methanosarcina, Methanomicrobium, Methanobrevibacter, and Methanobacterium) promoted hydrogen removal and the growth of nitrogen-producing microorganisms (Pecoramyces, Piromyces, Caecomyces, and Orpinomyces). It also reinforced the glutamate-glutamine pathway, as evidenced by the higher expression of glnA, GLUL, gdhA, and ureAB, suggesting enhanced internal cycling of nitrogen for microbial survival. This selfish microbial survival strategy deprived the host of adequate volatile fatty acids for energy metabolism, resulting in the downregulation of rumen epithelial cell cycle proteins (CCNB1, CCNE), abnormal mitochondrial morphology, and reduced mitochondrial deoxyribonucleic acid copy number and adenosine triphosphate production. Overall, these findings revealed the adaptive survival strategies of rumen microbiota with solid diet deficiency in early life, which caused alterations in epithelial cell mitochondrial function.
在极端营养底物缺乏的情况下,胃肠道微生物群和宿主代谢的适应性反应在很大程度上尚不清楚。在此,我们成功地在新生羔羊的瘤胃中建立了一个不引入固体饲料的微生物底物缺乏模型。在没有固体饲料的情况下,我们观察到瘤胃细菌的辛普森指数降低,同时普雷沃氏菌、硒单胞菌、巨球型菌和琥珀酸裂解菌等关键微生物的丰度显著下降,这表明微生物相互作用网络简化。此外,更多尿素和氨氮的产生促进了微生物对氮的高效利用,将氨作为生存的氮源优先利用,重新分配能量以克服营养限制并维持其生存能力。此外,富集的古菌(甲烷八叠球菌、甲烷微菌、甲烷短杆菌和甲烷杆菌)促进了氢气的去除以及产氮微生物(嗜瘤胃普氏菌、梨形内毛虫、盲肠内毛虫和奥尔平内毛虫)的生长。它还加强了谷氨酸 - 谷氨酰胺途径,谷氨酰胺合成酶、谷氨酰胺合成酶、谷氨酸脱氢酶和脲酶AB的高表达证明了这一点,表明为微生物生存而增强的氮内部循环。这种自私的微生物生存策略剥夺了宿主用于能量代谢的足够挥发性脂肪酸,导致瘤胃上皮细胞周期蛋白(细胞周期蛋白B1、细胞周期蛋白E)下调、线粒体形态异常以及线粒体脱氧核糖核酸拷贝数和三磷酸腺苷产生减少。总体而言,这些发现揭示了早期生命中固体饲料缺乏时瘤胃微生物群的适应性生存策略,这导致了上皮细胞线粒体功能的改变。