Suppr超能文献

基于WFU-Unet的巡检车辆采集的道路裂缝在树荫环境下的分割检测方法

Segmentation detection method in tree-shaded environment for road cracks collected by inspection vehicle on WFU-Unet.

作者信息

Zhang Qiong, Huang Shilin, Wang Haomiao, Ji Zhonghang, Zheng Shuang, Liu Yunqing

机构信息

School of Electronic Information and Engineering, Changchun University of Science of Technology, Changchun, China.

Jinlin Provincial Science and Technology Innovation Center of Intelligent Perception and Information Processing, Changchun, China.

出版信息

Sci Rep. 2025 Apr 6;15(1):11760. doi: 10.1038/s41598-025-96219-9.

Abstract

Road cracks pose a significant safety hazard to transportation, making timely detection crucial for traffic safety. Traditional crack segmentation methods face three main issues: (1) Tree shadow background affects crack recognition in real-world environments. (2) Conventional convolutional neural networks fail to detect complete cracks. (3) Direct deconvolution during upsampling results in unclear crack details. To address these challenges, this paper proposes the WFU-Unet model for road crack detection and segmentation. First, the WCM module, constructed with wavelet transform, ConvNext, and MobileNet, reduces shadow interference, enabling the network to distinguish between cracks and tree shadows. Second, the Fuse module replaces traditional convolutional blocks, enhancing the network's ability to extract crack features. Finally, the Up module substitutes conventional upsampling techniques to minimize spatial information loss of cracks. Experimental results show that the WFU-Unet model achieves a Miou of 81.68%, precision of 91.43%, recall of 86.63%, and F1-Score of 88.93%. Compared to other models, WFU-Unet demonstrates superior generalization ability and segmentation accuracy, making it more suitable for crack detection in shadowed environments.

摘要

道路裂缝对交通运输构成重大安全隐患,因此及时检测对于交通安全至关重要。传统的裂缝分割方法面临三个主要问题:(1)树木阴影背景影响现实环境中的裂缝识别。(2)传统卷积神经网络无法检测到完整的裂缝。(3)上采样过程中的直接反卷积导致裂缝细节不清晰。为应对这些挑战,本文提出用于道路裂缝检测与分割的WFU-Unet模型。首先,由小波变换、ConvNext和MobileNet构建的WCM模块减少阴影干扰,使网络能够区分裂缝和树木阴影。其次,Fuse模块取代传统卷积块,增强网络提取裂缝特征的能力。最后,Up模块替代传统上采样技术,以最小化裂缝的空间信息损失。实验结果表明,WFU-Unet模型的交并比达到81.68%,精度为91.43%,召回率为86.63%,F1分数为88.93%。与其他模型相比,WFU-Unet具有卓越的泛化能力和分割精度,更适合在阴影环境中进行裂缝检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e294/11973167/8fe69c7d81e7/41598_2025_96219_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验