Suppr超能文献

用于柑橘疾病分类的深度监督多尺度特征网络(DS-MENet)

DS-MENet for the classification of citrus disease.

作者信息

Liu Xuyao, Hu Yaowen, Zhou Guoxiong, Cai Weiwei, He Mingfang, Zhan Jialei, Hu Yahui, Li Liujun

机构信息

College of Computer & Information Engineering, Central South University of Forestry and Technology, Changsha, China.

Plant Protection Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China.

出版信息

Front Plant Sci. 2022 Jul 22;13:884464. doi: 10.3389/fpls.2022.884464. eCollection 2022.

Abstract

Affected by various environmental factors, citrus will frequently suffer from diseases during the growth process, which has brought huge obstacles to the development of agriculture. This paper proposes a new method for identifying and classifying citrus diseases. Firstly, this paper designs an image enhancement method based on the MSRCR algorithm and homomorphic filtering algorithm optimized by Laplacian (HFLF-MS) to highlight the disease characteristics of citrus. Secondly, we designed a new neural network DS-MENet based on the DenseNet-121 backbone structure. In DS-MENet, the regular convolution in Dense Block is replaced with depthwise separable convolution, which reduces the network parameters. The ReMish activation function is used to alleviate the neuron death problem caused by the ReLU function and improve the robustness of the model. To further enhance the attention to citrus disease information and the ability to extract feature information, a multi-channel fusion backbone enhancement method (MCF) was designed in this work to process Dense Block. We use the 10-fold cross-validation method to conduct experiments. The average classification accuracy of DS-MENet on the dataset after adding noise can reach 95.02%. This shows that the method has good performance and has certain feasibility for the classification of citrus diseases in real life.

摘要

受各种环境因素影响,柑橘在生长过程中经常会遭受病害,这给农业发展带来了巨大障碍。本文提出了一种柑橘病害识别与分类的新方法。首先,本文设计了一种基于MSRCR算法和经拉普拉斯优化的同态滤波算法(HFLF-MS)的图像增强方法,以突出柑橘的病害特征。其次,我们基于DenseNet-121骨干结构设计了一种新的神经网络DS-MENet。在DS-MENet中,Dense Block中的常规卷积被深度可分离卷积所取代,从而减少了网络参数。使用ReMish激活函数来缓解ReLU函数导致的神经元死亡问题,并提高模型的鲁棒性。为了进一步增强对柑橘病害信息的关注和提取特征信息的能力,本文设计了一种多通道融合骨干增强方法(MCF)来处理Dense Block。我们使用10折交叉验证方法进行实验。DS-MENet在添加噪声后的数据集上的平均分类准确率可达95.02%。这表明该方法具有良好的性能,在实际生活中对柑橘病害分类具有一定的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8da9/9355402/5cf9eb59da68/fpls-13-884464-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验