Suppr超能文献

探索环境污染物对人类健康潜在影响的计算洞察。

Computational insights into exploring the potential effects of environmental contaminants on human health.

作者信息

Cao Fuyan, Zhao Xinyue, Fu Xueqi, Jin Yue

机构信息

Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.

Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, China.

出版信息

Sci Rep. 2025 Apr 6;15(1):11779. doi: 10.1038/s41598-025-96193-2.

Abstract

With rapid industrialization and urbanization, the increasing prevalence of air and water pollutants poses a significant threat to public health. Traditional research methods, such as epidemiological studies and in vitro/in vivo experiments, provide valuable biological insights but are often costly, time-consuming, and limited in scale. To address this gap, this study develops a machine learning-based approach to predict the carcinogenicity of pollutants. Using the dataset of carcinogenic and non-carcinogenic molecules that we collected, the pretrained KPGT model trained with molecular fingerprints and descriptors achieved an AUC of 0.83, surpassing traditional machine learning models. To validate this model, common pollutants from air and water sources were analyzed. Further clustering classified these pollutants into five distinct groups. Target prediction analysis identified key genes associated with representative pollutant molecules, such as MAPK1, MTOR, and PTPN11. GO and KEGG pathway analyses, along with survival analysis, revealed potential carcinogenic mechanisms and prognostic implications. Our findings contribute to improved pollution risk assessment and evidence-based environmental policy development, ultimately aiding in the mitigation of pollutant-related health risks.

摘要

随着快速工业化和城市化,空气和水污染物的日益流行对公众健康构成了重大威胁。传统的研究方法,如流行病学研究和体外/体内实验,提供了有价值的生物学见解,但往往成本高昂、耗时且规模有限。为了弥补这一差距,本研究开发了一种基于机器学习的方法来预测污染物的致癌性。使用我们收集的致癌和非致癌分子数据集,通过分子指纹和描述符训练的预训练KPGT模型的AUC达到0.83,超过了传统的机器学习模型。为了验证该模型,对空气和水源中的常见污染物进行了分析。进一步的聚类将这些污染物分为五个不同的组。目标预测分析确定了与代表性污染物分子相关的关键基因,如MAPK1、MTOR和PTPN11。GO和KEGG通路分析以及生存分析揭示了潜在的致癌机制和预后影响。我们的研究结果有助于改进污染风险评估和基于证据的环境政策制定,最终有助于减轻与污染物相关的健康风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cb9/11973197/3801d0ce9196/41598_2025_96193_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验