Gupta Sanju, Narajczyk Magdalena, Sawczak Mirosław, Jasinski Jacek B, Bogdanowicz Robert, Yang Shubin
Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Narutowicza Str. 11/12, Gdańsk, 80-233, Poland.
Advanced Materials Center, Gdańsk University of Technology, Gdańsk, 80-233, Poland.
Small. 2025 May;21(20):e2502297. doi: 10.1002/smll.202502297. Epub 2025 Apr 7.
Deployment of 2D layered materials beyond graphene, i.e., MXene (TiCT, T = ─OH, F, O) is rigorously explored for generation-II electrochemical energy storage systems. The strategic development of asymmetric supercapacitors (ASCs) comprising MXene as negative and laser-induced porous graphene (LIPG) as a positive electrode (i.e., MXene//LIPG) is reported to improve electrochemical energy storage in lateral (coplanar) and sandwich (cofacial) device configurations. Moreover, the interdigitated lateral device is scalable, flexible, current-collector, and binder-free. Electrochemical performance is evaluated under various electrolyte compositions: aqueous (AE), organic (OE), and ionic liquid (ILE). Notably, ASCs operate up to ≈1.0 V with AE, 1.6-2.0 V with OE, and 2.4-3.0 V with ILE exhibit enhanced energy densities depending upon the electrolyte and 100% Coulombic efficiency while retaining 75-95 % of initial capacitance after thousands of cycles (≥10 000-200 000). Specifically, the highest specific energy density (289 mW h cm at power density 0.2 W cm) is recorded for ILE-sandwich, seven times higher as compared with AE-sandwich (40 mW h cm at power density 0.4 W cm) followed by intermediate value for OE-lateral (8.5 mW h cm at power density 0.14 W cm) device. On the other hand, symmetric (MXene//MXene) device provided for sandwich (ILE: 12 W h cm at power density 0.5 W cm; OE: 8.8 mW h cm at power density 0.1 W cm, AE: 4.2 mW h cm at power density 0.1 W cm) and lateral (OE: 3 mW h cm at power density 0.2 W cm) configurations. Experimental findings are discussed within the framework of novel and constructive dual functionality of asymmetric electrodes' charging mechanism offer a benchmark for high-performing next-generation flexible microscale supercapacitors.
除了石墨烯之外,二维层状材料(即MXene(TiCT,T = ─OH、F、O))也被严格探索用于第二代电化学储能系统。据报道,以MXene为负极、激光诱导多孔石墨烯(LIPG)为正极(即MXene//LIPG)的不对称超级电容器(ASC)的战略发展,可改善横向(共面)和夹层(共面)器件配置中的电化学储能。此外,叉指式横向器件具有可扩展性、柔韧性、无集流体和无粘合剂的特点。在各种电解质组成下评估电化学性能:水性(AE)、有机(OE)和离子液体(ILE)。值得注意的是,ASC在使用AE时工作电压高达≈1.0 V,使用OE时为1.6 - 2.0 V,使用ILE时为2.4 - 3.0 V,根据电解质的不同,其能量密度有所提高,库仑效率为100%,并且在数千次循环(≥10000 - 200000次)后仍保留初始电容的75 - 95%。具体而言,ILE夹层的最高比能量密度(在功率密度为0.2 W/cm²时为289 mW h/cm²)被记录下来,与AE夹层(在功率密度为0.4 W/cm²时为40 mW h/cm²)相比高出七倍,其次是OE横向器件(在功率密度为0.14 W/cm²时为8.5 mW h/cm²)的中间值。另一方面,对称(MXene//MXene)器件在夹层(ILE:在功率密度为0.5 W/cm²时为12 W h/cm²;OE:在功率密度为0.1 W/cm²时为8.8 mW h/cm²,AE:在功率密度为0.1 W/cm²时为4.2 mW h/cm²)和横向(OE:在功率密度为0.2 W/cm²时为3 mW h/cm²)配置下提供。在不对称电极充电机制的新颖且具有建设性的双重功能框架内讨论了实验结果,为高性能下一代柔性微型超级电容器提供了一个基准。