Gupta Sanju, Carrizosa Sara B, Aberg Bryce
Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunication and Informatics, and Advanced Materials Center, Gdańsk University of Technology, 80-233, Gdańsk, Poland.
Department of Physics, Pennsylvania State University, University Park, PA, 16802, USA.
Sci Rep. 2024 Nov 26;14(1):29277. doi: 10.1038/s41598-024-79622-6.
We report a strategic development of asymmetric (supercapacitive-pseudocapacitive) and hybrid (supercapacitive/pseudocapacitive-battery) energy device architectures as generation-II electrochemical energy systems. We derived performance-potential estimation regarding the specific power, specific energy, and fast charge-discharge cyclic capability. Among the conceived group, pseudocapacitor-battery hybrid device is constructed with a high-rate intrinsic asymmetric pseudocapacitive (α - MnO/rGO) and a high-capacity Li-ion intercalation battery type (po-nSi/rGO) electrodes. The experimental setup was developed to measure the current sharing between the two different active materials in a single device allowing us to distinguish the contribution of each active electrode material. The combined potentiostatic cyclic voltammograms and galvanostatic charge-discharge cycling profiles provided gravimetric capacity exceeding 600 F/g (or 180.5 mAh g and ≥ 35mC/cm) resulting in higher specific power and specific energy densities of 6.5 kW kg and 33.5 Wh kg with Coulombic efficiency (CE) and capacitance retention exceeding ≥ 85-90%, reported to date for full cell configuration, compared with symmetric or half-cell configurations (ca. 0.1 kW kg and 13.7 Wh kg). Other systems studied provided specific energy ranged between 28 Wh kg and 50 Wh kg and specific power between 6.5 kW kgand 1.3 kW kg. Moreover, the behavior of such asymmetric hybrid devices represented a linear combination of the two active electrode material systems. The use of aqueous (and organic) electrolytes for asymmetric electrodes dramatically improved device performance and stability depending upon the electrode combination forming hybrid energy devices. We attribute the observed efficient performance of these hybrid devices induced by hybridized and emergent redox chemistries of merged electrode materials and dynamical processes at the electrode-electrolyte interfaces (intrinsic electroactivity, optimized double-layer and quantum capacitance) which play multiple roles. These energy devices are commercially relevant due to their potential viability in future hybrid electric vehicles, smart electric grids, electrocatalytic fuel production, space (micro-satellites), and miniaturized flexible electronic and wearable biomedical devices.
我们报道了作为第二代电化学能源系统的不对称(超级电容-赝电容)和混合(超级电容/赝电容-电池)能源设备架构的战略发展。我们得出了关于比功率、比能量和快速充放电循环能力的性能-潜力估计。在所设想的组中,赝电容-电池混合设备由高倍率本征不对称赝电容(α-MnO/rGO)和高容量锂离子嵌入电池型(po-nSi/rGO)电极构成。开发了实验装置来测量单个设备中两种不同活性材料之间的电流分配,这使我们能够区分每种活性电极材料的贡献。恒电位循环伏安图和恒电流充放电循环曲线相结合,提供了超过600 F/g(或180.5 mAh/g且≥35 mC/cm²)的重量容量,从而产生了更高的比功率和比能量密度,分别为6.5 kW/kg和33.5 Wh/kg,库仑效率(CE)和电容保持率超过≥85%-90%,与对称或半电池配置(约0.1 kW/kg和13.7 Wh/kg)相比,这是迄今为止全电池配置所报道的。研究的其他系统提供的比能量在28 Wh/kg至50 Wh/kg之间,比功率在6.5 kW/kg至1.3 kW/kg之间。此外,这种不对称混合设备的行为代表了两种活性电极材料系统的线性组合。根据形成混合能源设备的电极组合,使用水性(和有机)电解质作为不对称电极可显著提高设备性能和稳定性。我们将这些混合设备观察到的高效性能归因于合并电极材料的杂交和新兴氧化还原化学以及电极-电解质界面处的动态过程(本征电活性、优化的双层和量子电容)所起的多种作用。这些能源设备具有商业相关性,因为它们在未来的混合动力电动汽车、智能电网、电催化燃料生产、太空(微型卫星)以及小型化柔性电子和可穿戴生物医学设备中具有潜在的可行性。