Kumar Pawan, Sharma Jitender, Kumar Ravinder, Najser Jan, Frantik Jaroslav, Manuja Anju, Sunnam Nagaraju, Praveenkumar Seepana
Department of Biotechnology, Kurukshetra University, Kurukshetra 136119, India.
School of Mechanical Engineering, Lovely Professional University, City Phagwara, 144411, India.
Biomater Sci. 2025 May 13;13(10):2556-2579. doi: 10.1039/d4bm01606h.
The development of bioink-based 3D-printed scaffolds has revolutionized bone tissue engineering (BTE) by enabling patient-specific and biomimetic constructs for bone regeneration. This review focuses on the biocompatibility and mechanical properties essential for scaffold performance, highlighting advancements in bioink formulations, material combinations, and printing techniques. The key biomaterials, including natural polymers (gelatin, collagen, alginate), synthetic polymers (polycaprolactone, polyethylene glycol), and bioactive ceramics (hydroxyapatite, calcium phosphate), are discussed concerning their osteoconductivity, printability, and structural integrity. Despite significant progress, challenges remain in achieving optimal mechanical strength, degradation rates, and cellular interactions. The review explores emerging strategies such as gene-activated bioinks, nanocomposite reinforcements, and crosslinking techniques to enhance scaffold durability and bioactivity. By synthesizing recent developments, this work provides insights into future directions for bioink-based scaffolds, paving the way for more effective and personalized bone regenerative therapies.
基于生物墨水的3D打印支架的发展彻底改变了骨组织工程(BTE),它能够制造出针对患者的仿生骨再生构建体。本综述聚焦于支架性能所必需的生物相容性和机械性能,突出了生物墨水配方、材料组合及打印技术方面的进展。文中讨论了关键生物材料,包括天然聚合物(明胶、胶原蛋白、藻酸盐)、合成聚合物(聚己内酯、聚乙二醇)和生物活性陶瓷(羟基磷灰石、磷酸钙),涉及它们的骨传导性、可打印性和结构完整性。尽管取得了重大进展,但在实现最佳机械强度、降解速率和细胞相互作用方面仍存在挑战。本综述探讨了诸如基因激活生物墨水、纳米复合增强材料和交联技术等新兴策略,以提高支架的耐久性和生物活性。通过综合近期的进展,这项工作为基于生物墨水的支架的未来发展方向提供了见解,为更有效和个性化的骨再生治疗铺平了道路。