Suppr超能文献

用于骨修复的包含镁基纳米复合材料和细胞负载生物墨水的 3D 骨传导构建体的混合生物制造。

Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair.

机构信息

Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; Light-Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand.

Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand.

出版信息

Bone. 2022 Jan;154:116198. doi: 10.1016/j.bone.2021.116198. Epub 2021 Sep 15.

Abstract

Tissue engineering approaches for bone repair have rapidly evolved due to the development of novel biofabrication technologies, providing an opportunity to fabricate anatomically-accurate living implants with precise placement of specific cell types. However, limited availability of biomaterial inks, that can be 3D-printed with high resolution, while providing high structural support and the potential to direct cell differentiation and maturation towards the osteogenic phenotype, remains an ongoing challenge. Aiming towards a multifunctional biomaterial ink with high physical stability and biological functionality, this work describes the development of a nanocomposite biomaterial ink (Mg-PCL) comprising of magnesium hydroxide nanoparticles (Mg) and polycaprolactone (PCL) thermoplastic for 3D printing of strong and bioactive bone regenerative scaffolds. We characterised the Mg nanoparticle system and systematically investigated the cytotoxic and osteogenic effects of Mg supplementation to human mesenchymal stromal cells (hMSCs) 2D-cultures. Next, we prepared Mg-PCL biomaterial ink using a solvent casting method, and studied the effect of Mg over mechanical properties, printability and scaffold degradation. Furthermore, we delivered MSCs within Mg-PCL scaffolds using a gelatin-methacryloyl (GelMA) matrix, and evaluated the effect of Mg over cell viability and osteogenic differentiation. Nanocomposite Mg-PCL could be printed with high fidelity at 20 wt% of Mg content, and generated a mechanical reinforcement between 30%-400% depending on the construct internal geometry. We show that Mg-PCL degrades faster than standard PCL in an accelerated-degradation assay, which has positive implications towards in vivo implant degradation and bone regeneration. Mg-PCL did not affect MSCs viability, but enhanced osteogenic differentiation and bone-specific matrix deposition, as demonstrated by higher ALP/DNA levels and Alizarin Red calcium staining. Finally, we present proof of concept of Mg-PCL being utilised in combination with a bone-specific bioink (Sr-GelMA) in a coordinated-extrusion bioprinting strategy for fabrication of hybrid constructs with high stability and synergistic biological functionality. Mg-PCL further enhanced the osteogenic differentiation of encapsulated MSCs and supported bone ECM deposition within the bioink component of the hybrid construct, evidenced by mineralised nodule formation, osteocalcin (OCN) and collagen type-I (Col I) expression within the bioink filaments. This study demonstrated that magnesium-based nanocomposite bioink material optimised for extrusion-based 3D printing of bone regenerative scaffolds provide enhanced mechanical stability and bone-related bioactivity with promising potential for skeletal tissue regeneration.

摘要

由于新型生物制造技术的发展,骨修复的组织工程方法迅速发展,为制造具有精确位置特定细胞类型的解剖准确的活体植入物提供了机会。然而,可生物降解材料墨水的可用性有限,这些墨水可以用高分辨率 3D 打印,同时提供高结构支撑,并有可能指导细胞分化和成熟为成骨表型,这仍然是一个持续的挑战。本工作旨在开发一种多功能生物材料墨水,该墨水具有高物理稳定性和生物功能,描述了一种包含纳米镁粒子和聚己内酯(PCL)热塑性塑料的纳米复合生物材料墨水(Mg-PCL)的开发,用于 3D 打印强韧且具有生物活性的骨再生支架。我们对 Mg 纳米粒子系统进行了表征,并系统地研究了 Mg 对人间充质基质细胞(hMSC)2D 培养的细胞毒性和成骨作用的影响。接下来,我们使用溶剂浇铸法制备了 Mg-PCL 生物材料墨水,并研究了 Mg 对机械性能、可打印性和支架降解的影响。此外,我们在 Mg-PCL 支架内输送了 MSC,使用明胶甲基丙烯酰(GelMA)基质,并评估了 Mg 对细胞活力和成骨分化的影响。含有 20wt%Mg 含量的纳米复合 Mg-PCL 可以高精度打印,根据构建体内部几何形状,机械增强效果为 30%-400%。我们表明,与标准 PCL 相比,Mg-PCL 在加速降解试验中降解得更快,这对体内植入物降解和骨再生有积极影响。Mg-PCL 不影响 MSC 的活力,但增强了成骨分化和骨特异性基质沉积,表现为更高的碱性磷酸酶/DNA 水平和茜素红钙染色。最后,我们提出了使用 Mg-PCL 与骨特异性生物墨水(Sr-GelMA)结合的概念验证,在协同挤出生物打印策略中制造具有高稳定性和协同生物学功能的混合结构。Mg-PCL 进一步增强了包封 MSC 的成骨分化,并支持混合结构中生物墨水成分内的骨 ECM 沉积,这表现在生物墨水纤维内形成矿化结节、骨钙素(OCN)和胶原蛋白 I(Col I)的表达。本研究表明,针对基于挤出的骨再生支架 3D 打印优化的基于镁的纳米复合生物墨水材料提供了增强的机械稳定性和与骨相关的生物活性,具有骨骼组织再生的巨大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验