Pylvänäinen Joanna W, Grobe Hanna, Jacquemet Guillaume
Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland.
Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520 Turku, Finland.
J Cell Sci. 2025 Apr 1;138(7). doi: 10.1242/jcs.263801. Epub 2025 Apr 7.
Data exploration is an essential step in quantitative cell biology, bridging raw data and scientific insights. Unlike polished, published figures, effective data exploration requires a flexible, hands-on approach that reveals trends, identifies outliers and refines hypotheses. This Opinion offers simple, practical advice for building a structured data exploration workflow, drawing on the authors' personal experience in analyzing bioimage datasets. In addition, the increasing availability of generative artificial intelligence and large language models makes coding and improving data workflows easier than ever before. By embracing these practices, researchers can streamline their workflows, produce more reliable conclusions and foster a collaborative, transparent approach to data analysis in cell biology.
数据探索是定量细胞生物学中的一个重要步骤,它连接着原始数据和科学见解。与经过润色的已发表图表不同,有效的数据探索需要一种灵活的、亲自动手的方法,以揭示趋势、识别异常值并完善假设。本观点文章借鉴作者在分析生物图像数据集方面的个人经验,为构建结构化的数据探索工作流程提供了简单实用的建议。此外,生成式人工智能和大语言模型的日益普及使编码和改进数据工作流程比以往任何时候都更容易。通过采用这些方法,研究人员可以简化工作流程,得出更可靠的结论,并在细胞生物学数据分析中培养一种协作、透明的方法。