Dashwood Amy, Makuyana Ntombizodwa, van der Kant Rob, Ghodsinia Arman, Hernandez Alvaro R, Lienart Stephanie, Burton Oliver, Dooley James, Ali Magda, Kouser Lubna, Naranjo Francisco, Holt Matthew G, Rousseau Frederic, Schymkowitz Joost, Liston Adrian
Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
Immunology Programme, The Babraham Institute, Cambridge, United Kingdom.
Comput Struct Biotechnol J. 2025 Mar 4;27:1112-1123. doi: 10.1016/j.csbj.2025.03.002. eCollection 2025.
The pleotropic nature of interleukin-2 (IL2) has allowed it to be used as both a pro-inflammatory and anti-inflammatory therapeutic agent, through promotion of regulatory T cell (Treg) responses via the trimeric IL2RABG receptor or promotion of CD8 T cell responses via the dimeric IL2RBG receptor, respectively. However, the utility of IL2 as a treatment is limited by this same pleiotropy, and protein engineering to bias specificity towards either Treg or CD8 T cell lineage often requires a trade-off in protein production or total bioactivity. Here we use SolubiS and dTANGO, computational algorithm-based methods, to predict mutations within the IL2 structure to improve protein production yield in muteins with altered cellular selectivity, to generate combined muteins with elevated therapeutic potential. The design and testing process identified the V106R (murine) / V91R (human) mutation as a Treg-enhancing mutein, creating a cation repulsion to inhibit primary binding to IL2RB, with a post-IL2RA confirmational shift enabling secondary IL2RB binding, and hence allowing the trimeric receptor complex to form. In human IL2, additional N90R T131R aggregation-protecting mutations could improve protein yield of the V91R mutation. The approach also generated novel CD8 T cell-promoting mutations. Y59K created a cation-cation repulsion with IL2RA, while Q30W enhanced CD8 T cell activity through potential π-stacking enhancing binding to IL2RB, with the combination highly stimulatory for CD8 T cells. For human IL2, Y45K (homolog to murine Y59K) coupled with E62K prevented IL2RA binding, however it required the aggregation-protecting mutations of N90R T131R to rescue production. These muteins, designed with both cellular specificity and protein production features, have potential as both biological tools and therapeutics.
白细胞介素-2(IL2)的多效性使其既可用作促炎治疗剂,也可用作抗炎治疗剂,分别通过三聚体IL2RABG受体促进调节性T细胞(Treg)反应,或通过二聚体IL2RBG受体促进CD8 T细胞反应。然而,IL2作为一种治疗药物的效用也受到这种多效性的限制,并且通过蛋白质工程使特异性偏向Treg或CD8 T细胞谱系往往需要在蛋白质产量或总生物活性方面进行权衡。在这里,我们使用基于计算算法的方法SolubiS和dTANGO来预测IL2结构内的突变,以提高细胞选择性改变的突变体蛋白的产量,从而生成具有更高治疗潜力的组合突变体。设计和测试过程确定V106R(小鼠)/V91R(人)突变为增强Treg的突变体,产生阳离子排斥以抑制与IL2RB的初级结合,IL2RA确认后发生构象转变从而实现与IL2RB的次级结合,进而使三聚体受体复合物得以形成。在人IL2中,额外的N90R T131R聚集保护突变可以提高V91R突变体的蛋白质产量。该方法还产生了新的促进CD8 T细胞的突变。Y59K与IL2RA产生阳离子-阳离子排斥,而Q30W通过潜在的π-堆积增强与IL2RB的结合来增强CD8 T细胞活性,二者组合对CD8 T细胞具有高度刺激性。对于人IL2,Y45K(小鼠Y59K的同源物)与E62K结合可阻止IL2RA结合,然而它需要N90R T131R的聚集保护突变来挽救产量。这些兼具细胞特异性和蛋白质生产特性设计的突变体,具有作为生物学工具和治疗药物的潜力。